a: XétΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
Do đó:ΔABC\(\sim\)ΔHBA
b: Ta có: ΔABC\(\sim\)ΔHBA
nên BA/BH=BC/BA
hay \(BA^2=BH\cdot BC\)
\(BH=\dfrac{BA^2}{BC}=\dfrac{3^2}{5}=1.8\left(cm\right)\)
a: XétΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
Do đó:ΔABC\(\sim\)ΔHBA
b: Ta có: ΔABC\(\sim\)ΔHBA
nên BA/BH=BC/BA
hay \(BA^2=BH\cdot BC\)
\(BH=\dfrac{BA^2}{BC}=\dfrac{3^2}{5}=1.8\left(cm\right)\)
Cho tam giác ABC vuông góc tại A có AB=3cm; BC= 5cm. Vẽ đường AH của tam giác ABC
a. Chứng minh tam giác ABC động dạng với tam giác HAC
b. Tính AH, AC
c. Đường phân giác BD của tam giác ABC cắt AH ở E. Tính EH/EA. Tính EH
d. Tính diện tích tứ giác HEDC
Cho tam giác ABC vuông tại A, có AB = 15cm, AC = 20cm, đường cao AH
a) Chứng minh tam giác ABC đồng dạng tam giác HBA
b) Tính BC, AH, HB, HC
c)Kẻ BD là đường phân giác của góc B cắt AH tại E. Tính AE, EH
Cho tam giác ABC vuông tại A, vẽ đường cao AH
a/ CM : AB2 = BH.BC
b/ Qua B vẽ đường thẳng vuông góc AB cắt AH tại D. CM: BH.BC = AH.AD
c/ Vẽ phân giác AM của tam giác ABC. CM : MB/MC=HB/HA
d/ Biết AB = 12 cm, BC = 20cm. Tính diện tích tứ giác ABDC
Cho tam giác ABC vuông tại A có AB = 12 cm, AC = 16 cm. Vẽ đường cao AH. Vẽ đường phân giác AD của tam giác ABC ( D thuộc BC)
a) Tính BC, BD, CD, AH
b) Gọi M,N lần lượt là hình chiếu của H lên AB, CD. Tính diện tích tứ giác AMHN.
c) Chứng minh AN / AC + AM/AB = 1
Cho tam giác ABC vuông tại A có AB = 12cm, AC =16cm. Vẽ đường cao AH.
a) Cm tam giác HBA đồng dạng tam giác ABC.
b) Tính BC,AH,BH.
c)Vẽ đường phân giác AD của tam giác ABC( D thuộc BC).Tính BD,CD
d) Trên AH lấy điểm K sao cho AK=3,6cm. Từ K kẻ đường thẳng song song BC cắt AB ,AC lần lượt tại M, N.
Tính diện tích tứ giác BMNC.
Cho tam giác ABC vuông tại A , AB = 3cm , AC= 4 cm , BD là phân giác của ABC ( D thuộc AC ). vẽ đường cao AH ( H thuộc BC )
của ABC
a) Tính độ dài cạnh BC , DA , DC
b) Chứng minh tam giác AHB đồng dạng với tam giác CAB . Chứng minh AB^2 = BH.BC
c) Tính tỉ số diện tích của tam giác ABD và tam giác BCD
Cho tam giác ABC vuông tại A có AB= 6cm, AC=8 cm. Kẻ đường cao AH (H ϵ BC)
a) Chứng minh △ABC~△HBA
b) Tính độ dài các cạnh BC, AH
c) Phân giác của góc ACB cắt AH tại E, cắt AB tại D. Tính tỉ số diện tích của 2 △ ACD và HCE
Cho tam giác ABC vuông tại A. Kẻ đường cao AH. Biết BH=4cm,CH=9cm Chứng minh tam giác ABH đồng dạng với tam giác CBA từ đó suy ra AB^2=BH.BC Tính AB,AC đường phân giác BD cắt AH tại E(D thuộc AC) . Tính SEBH/SDBA và chứng minh EA/EH=DC/DA
cho tam giác abc vuông tại a có ab = 12 cm ac = 16 cm. vẽ đường cao ah và đường phân giác AD của tam giác a) CM tam giác HBA đồng dạng với tâm giác ABC b) tìm tỉ số điện tích tam giác ABD và tam giác ADC c) tính BC, BD, AH d) tính điện tích tam giác AHD