a góc ABC+góc ACB=90 độ
=>góc OBC+góc OCB=45 độ
=>góc BOC=135 độ
b: ΔBAN cân tại B
mà BD là phân giác
nên BD vuông góc AN
a góc ABC+góc ACB=90 độ
=>góc OBC+góc OCB=45 độ
=>góc BOC=135 độ
b: ΔBAN cân tại B
mà BD là phân giác
nên BD vuông góc AN
Cho tam giác ABC vuông tại A, vẽ AH vuông góc với BC. Trên cạnh BC lấy điểm N sao cho BN = BA, trên cạnh BC lấy điểm M sao cho CM = CA. Tia phân giác góc ABC cắt AM tại I và cắt AN tại D, tia phân giác góc ACB cắt AN tại K và AM tại E. Gọi O là giao điểm của BD và CE. Chứng minh:
a. BD vuông góc với AN, CE vuông góc với AM
b. BD song song với MK
c. IK = OA
cho tam giác abc vuông tại a tia phân giác của góc b cắt ac tai e,tia phân giác góc c cắt ab tại e gọi o là giao điểm của bd và ce trên bc lấy h và k sao cho bh=ba;ba=ck chứng minh a,dh song song với ek;b, trên ac lấy m sao cho am=ab đường thẳng vuông goc với am tại m cắt dh ở q biết độ dài bm=a*căn bậc 2 của 2 tính chua vi tam giác DMQ theo a
Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt đường thẳng BD tại M. C/M tam giác BAM bằng tam giác ABC d) CMR: AB là tia phân giác cuả góc DAM Bài 3: Cho tam giác ABC vuông ở A và AB=AC.Gọi K là trung điểm của BC a) C/M: tam giác AKB bằng tam giác AKC b) C/M: AK vuông góc với BC c) từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E.C/M EK song song với AK Bài 4: Cho tam giác ABC có AB=AC, kẻ BD vuông góc với AC, CE vuông góc với AB(D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. CMR a) BD= CE b) tam giác OEB bằng tam giác ODC c) AO là tia phân giác cua góc BAC
cho tam giác ABC vuông tại A, AB<AC. tia phân giác của góc B và góc C thứ tự cắt AC,AB tại D và E. từ A kẻ đường thẳng vuông góc với BD tại K và cắt BC tại N. từ A kẻ đường thẳng vuông góc với CE tại I và cắt BC tại M
a) chứng minh rằng DN // EM
b) tính góc MAN
c) gọi O là giao điểm của BD và CE chứng minh rằng IK2 =AO2/2
Cho \(ΔABC\) vuông tại A, vẽ \(AH⊥BC\). Trên BC lấy N sao cho BN = BA, trên BC lấy M sao cho CM = CA. Tia phân giác \(\widehat{ABC}\) cắt AM tại I và cắt AN tại D, tia phân giác \(\widehat{ACB}\) cắt AN tại K và cắt AM tại E. Gọi O là giao điểm của BD và CE
a) Chứng minh \(BD⊥AN,CE⊥AM\)
b) Chứng minh BD // MK
c) Chứng minh IK = OA
Chỉ cần làm phần b, c thôi nhé!
Cho tam giác ABC cân tại A. Trên cạnh BC lấy 1 điểm D( BD < DC) .Trên tia đối của tia CB lấy điểm E sao cho BD= CE. Qua D và E kẻ các đường vuông góc với BC cắt AB và AC lần lượt tại M và N.
a) Chứng minh: DM= EN
b) Gọi I là giao điểm của MN với BC. Chứng minh: I là trung điểm của MN
c) Qua I kẻ đường vuông góc với MN cắt phân giác của góc BAC tại O.
Chứng minh: tma giác ABO= ACO
d) Chứng minh: OC vuông góc với AN
Cho tam giác ABC vuông tại A (AB < AC). Tia phân giác của góc ABC cắt AC tại D. Trên cạnh BC lấy điểm K sao cho BA = BK
a/ Chứng minh tam giác BAD = BKD và
b/ Trên tia đối của tia AB lấy điểm E sao cho BE = BC. Gọi I là giao điểm của tia BD với CE. Chứng minh
c/ Chứng minh ba điểm K, D, E thẳng hàng.
Cần gấp. Chi tiết!!!!
Cho tam giác ABC vuông tại A. Lấy điểm M thuộc cạnh BC sao cho BM=AB.
Vẽ tia phân giác BD ( D thuộc cạnh AC ) của góc B, BD cắt AM tại H. Chứng minh rằng :
a) ∆ABH=∆MBH
b) Tia DB là tia phân giác của .
c) Kéo dài DM cắt AB tại k. Chứng minh AK=MC và BD ^ CK.