a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Vậy:BC=10cm
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Vậy:BC=10cm
cho tam giác ABC vuông tại A, có AB =6cm , AC=8cm< vẽ đường cao AH và phân giác BD
a. tính BC, AH
b.chứng minh AB2 = BH.BC và AH2=BH.BC
c. vẽ đường phân giác AE của góc A ( E thuộc BC). tính AE,EC
d. gọi I là giao điểm của AH và BD , chứng minh AB . BI = BD.HB
e. Tính diệ tích tam giác ABH và BDC
cho tam giác ABC vuông tại A có AB=6cm, AC=8cm. vẽ đường cao AH và phân giác BD
a, chứng minh AB2=BH.BC
b, vẽ phân giác AK của góc A (Kϵ BC). tính BK,KC
c, gọi I là giao điểm của AH và BD , chứng minh AB.BI=BD.HB
c, tính diện tích tam giác ABH
4.1. Cho tam giác ABC vuông tại A, AB = 6cm, AC = 8cm, đưong cao AH, đường phân giác BD.
a, Tính độ dài đoạn thang: BC, AD, DC?
b, Gọi I là giao điểm của AH và BD. Chứng minh rằng: AB. BI=BD.HB ?
c, Chứng minh tam giác AID là tam giác cân ?
Cho tam giác ABC vuông ở A, AB=6cm, AC=8cm, BC=10cm. vẽ đương cao AH và phân giác BE, tam giác HAB~ tam gaics ACB.
a)vẽ phân giác AD của gics A (D thuộc BC), chứng minh H năm giữa B và D.
b) tính AD, CD
c) Gọi I là giao điểm AH và BE, chứng minh AB.BI=BE.HB.
d) tính S tam giác ABH
tam giác abc vuông ở A, AB=6cm AC=8cm đường cao ah phân giác bd. Gọi i là giao điểm của ah và bd
a, tính ad, dc
b, chứng minh IH/IA=AD/DC
c, cứng minh ab.bi= bd.hb và tam giác aid cân
Cho tam giác Abc vuông ở A. Có Ab=6cm. Ac=8 cm. Vẽ đường cao AH và pa BD. Tính BC. Chung minh Ab mũ 2 =BH. BD
Gọi I là giao điểm của AH và BD. Chứng minh AB. BI=BD. HB
Tính diện tích tam giác ABH
Các bạn giúp mình với.
Bài 3: Tam giác ABC vuông tại A, đường phân giác BD. Kẻ AE vuông góc BD, AE cắt BC ở K.
a) Chứng minh tam giác ABK cân tại B
b) Chứng minh DK vuông góc BC
c) Kẻ AH vuông góc BC. Chứng minh AK là tia phân giác của góc HAC
d) Gọi I là giao điểm của AH và BD. Chứng minh IK//AC
Bài 4: Cho tam giác ABC có góc A=60độ,, AB<AC, đường cao BH (H thuộc BC).
a) So sánh góc ABC và góc ACB. Tính góc ABH.
b) Vẽ AD là phân giác của góc A (D thuộc BC), vẽ BI vuông góc AD tại I. Chứng minh tam giác AIB=tam giác BHA
c) Tia BI cắt AC ở E. Chứng minh tam giác ABE đều
Bài 5: Tam giác ABC vuông tại A, đường phân giác BD. Kẻ AE vuông góc BD, AE cắt BC ở K.
a) Biết AC =8cm, AB=6cm. Tính BC?
b) Tam giác ABK là tam giác gì?
c) Chứng minh DK vuông góc BC
d) Kẻ AH vuông góc BC. Chứng minh Ak là tia phân giác của góc HAC.
Bài 6: Cho tam giác ABC có AB=3cm, AC=4cm, BC=5cm
a) Tam giác ABC là tam giác gì
b) Vẽ BD là phân giác góc B. Trên cạnh BC lấy điểm E sao cho AB=AE. Chứng minh AD=DE
c) Chứng minh AE vuông góc BD
d) Kéo dài BA cắt ED tại F. Chứng minh AE//FC
Bài 7: Cho tam giác ABC cân tại A. Kẻ AH vuông góc BC tại H.
a) Chứng minh tam giác ABH=tam giácACH
b) Vẽ trung tuyến BM.Gọi G là giao điểm của AH và BM. Chứng minh G là trọng tâm của tam giac ABC
c) Cho AB=30cm, BH=18cm.Tính AH ,AG
d) Từ H kẻ HD // với AC (D thuộc AB) .Chứng minh ba điểm C,G,D thẳng hàng .
Bài 8: Cho tam giác ABC vuông tại A . Biết AB=3cm,AC=4cm
a)Tính BC
b) Gọi M là trung điểm của BC. Kẻ BH vuông góc AM tại H, CK vuông góc AM tại K. Chứng minh tam giác BHM=tam giac CKM
c)Kẻ HI vuông góc BC tại I .So sánh HI và MK
d) So sánh BH+ BK với BC
Cho tam giác ABC vuông tại A có AB = 6cm, AC = 8cm, đường cao AH, phân giác BD cắt nhau tại I. a) Chứng minh: ABH đồng dạng với CBA. b) Tính BC, AH, AD và DC. c) Chứng minh: AB.BI = BD.HB. d) Tính diện tích BHI.
Cho tam giác ABC vuông tại A. Biết AB =6cm, AC = 8cm; đường cao AH, phân giác BD. Gọi I là giao điểm của AH và BD.
a) Tính AD, DC
b) Chứng minh IH/IA = AD/DC
c) Chứng minh AB.BI = BD.HB và tam giác AID cân.