Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Mon an

Cho tam giác ABC vuông tại A, biết AB = 6cm, AC = 8cm. Gọi I là trung điểm của cạnh BC. Qua I vẽ IM vuông góc với AB tại M và IN vuông góc với AC tại N

a, Tính AI

b, Chứng minh tứ giác AMIN là hình chữ nhật

c, Gọi D là điểm đối xứng của I qua N. Chứng minh tứ giác ADCI là hình thoi

Nguyễn Lê Phước Thịnh
15 tháng 12 2023 lúc 21:08

a: Ta có: ΔABC vuông tại A

=>\(BC^2=AB^2+AC^2\)

=>\(BC^2=6^2+8^2=100\)

=>\(BC=\sqrt{100}=10\left(cm\right)\)

Ta có: ΔABC vuông tại A

mà AI là đường trung tuyến

nên \(AI=\dfrac{BC}{2}=5\left(cm\right)\)

b: Xét tứ giác AMIN có

\(\widehat{AMI}=\widehat{ANI}=\widehat{MAN}=90^0\)

=>AMIN là hình chữ nhật

c: Xét ΔABC có

I là trung điểm của CB

IN//AB

Do đó: N là trung điểm của AC

Xét tứ giác AICD có

N là trung điểm chung của AC và ID

=>AICD là hình bình hành

Hình bình hành AICD có AC\(\perp\)ID

nên AICD là hình thoi


Các câu hỏi tương tự
Cường Nhân
Xem chi tiết
Nguyễn Thành
Xem chi tiết
Nguyễn Hồ Song Đan
Xem chi tiết
Hảo hán
Xem chi tiết
anh hoang
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Đỗ Hồng Nhung
Xem chi tiết
bùi thị thương thuần
Xem chi tiết
bùi thị thương thuần
Xem chi tiết