18. cho ΔABC vuông tại A (AB<AC), vẽ đường cao AH. Trên tia HC lấy điểm D sao cho HD=AH. đường thẳng ⊥BC tại D cắt AC tại E. gọi M là trung điểm của BE, AM cắt BC tại G, Kẻ EI⊥AH
a, cm HDEI là hình chữ nhật
b, cm AE=AB
c, cm GB.AC=GC.AE
Cho tam giác ABC vuông tại A( AC > AB), đường cao AH( H thuộc BC). Trên tia đối của tia HB lấy điểm D sao cho HD=HA. Qua D kẻ đường thẳng vuông góc với BC cắt AC tại E.
1. Chứng minh CD.CB=CA.CE
2. tính số đo góc BEC
3. gọi M là trung điểm của đoạn BE. Tia AM cắt BC tại G.Chứng minh; GB/BC=HD/AH+HC
Cho tam giác ABC vuông tại A (AC > AB) đường cao AH (H ∈ BC). Trên tia HC lấy điểm D sao cho HD = HA. Đường vuông góc với BC tại D cắt AC tại E
a) Chứng minh rằng hai tam giác BEC và ADC đồng dạng
b) Cho AB=3cm. Tính độ dài BE
c) Gọi M là trung điểm BE, tia AM cắt BC tại G. Chứng minh \(\frac{GB}{BC}=\frac{HD}{AH+HC}\)
Cho tam giác ABC vuông tai A(AC>AB) , đường cao AH. Trên HC lấy điểm D sao cho HD = HA. Đường vuông gác với BC tại D cắt AC tại E.
a) Chứng minh tam giác BEC đồng dạng với tam giác ADC. Tính BE theo AB = m
b) Gọi M là trung điểm của BE. Chứng minh tam giác BHM đồng dạng với tam giác BEC. Tính góc AHM.
c) vẽ tia AM cắt BC tại G. Chứng minh rằng GB/BC = HD/(AH +HC)
Tam giác ABC vuông tại A, AB=3cm, AC=4cm, đường cao AH ( H thuộc BC). Trên tia HC lấy điểm D sao cho HD=HA. Đường vuông góc với BC tại D cắt AC tại E cắt AB tại F. Gọi M là trung điểm của BE, AM cắt BC tại G.
Chứng minh rằng \(\frac{ }{ }\)GB: GC = HD:HC
Cho ∆ABC vuông tại A (AC > AB), đường cao AH (H ∈ BC). Trên tia HC lấy điểm D sao cho HD =
HA. Đường vuông góc với BC tại D cắt AC tại E.
a) Chứng minh rằng ∆BEC ∼ ∆ADC. Tính BE theo m = AB
b) Gọi M là trung điểm của BE. Chứng minh rằng ∆BHM ∼ ∆BEC. Tính AHM
c) Tia AM cắt BC tại G. Chứng minh rằng \(\frac{GB}{BC}=\frac{HD}{AH+HC}\)
Cho tam giác ABC vuông có AC>AB, vẽ đường cao AH. Trên tia HC lấy điểm D sao cho HD=AH, Đường vuông góc với BC tại D cắt AC tại E.
a. Cm: tam giác HBA đồng dạng tam giác ABC và AB2=BH.BC
b. Cm: tam giác CDA đồng dạng tam giác CEB và AB= AE
c. Gọi M là trung diểm BE. Cm: góc BMH = Góc BCE
d. Tia AM Cắt BC tại G. Cm: (BG/BC) = HD/(AH+HC)
Cho Tam Giác ABC vuông tai A ( AC> AB) , đường cao AH ( H thuộc BC) . Trên Tia HC lấy điểm D sao cho HD= HA. Đường vuông góc vs BC tại D cắt AC tại E .
a) Chứng minh rằng hai tam giác BEC và ADC đồng dạng . Tính độ dài đoạn BE theo m = AB
b) gọi M là trung điểm của đoạn thẳng BE. Chứng minh rằng hai tam giác BHM và BEC đồng dạng .
c) Tia AM cắt BC tại G . C/m : GB/ BC= HD/ AH+ HC
Cho tam giác ABC vuông tại A (AC>AB), đường cao AH. Trên tia HC lấy điểm D sao cho HD=HA, đường thẳng vuông góc với BC tại D cắt AC tại E
a) Chứng minh AE=AB
b) Gọi M là trung điểm của BE. Tính góc AHM
Cho tam giác ABC vuông tại A có AB<AC có đường cao AH. Trên HC lấy D sao cho HD=HA. Đường vuông góc với BC tại D cắt AC tại E
a)CM tam giác BEC đồng dạng với tam giác ADC . Tính BE biết AB=m
b)Gọi M là trung điểm của BE. CM tam gaics BHM đồng dạng với tam giác BEC và tính góc AHM
c) Tia AM cắt BC tại G. CM GB/BC = HD/HA+HC