Tự vẽ hình
Xét \(\Delta BAM\)vuông tại A và\(\Delta\)BNM vuông tại N có:
BM:cạnh chung
B1=B2(BM là p/g của B)
=>\(\Delta BAM=\Delta BNM\)(cạnh huyện -góc nhọn)
=>MN=MA(2 cạnh tương ứng)
Vì BM là p/g củaB
=>M là trung điểm của AC
=>MC=MA
Tự vẽ hình
Xét \(\Delta BAM\)vuông tại A và\(\Delta\)BNM vuông tại N có:
BM:cạnh chung
B1=B2(BM là p/g của B)
=>\(\Delta BAM=\Delta BNM\)(cạnh huyện -góc nhọn)
=>MN=MA(2 cạnh tương ứng)
Vì BM là p/g củaB
=>M là trung điểm của AC
=>MC=MA
Cho tam giác ABC lấy N thuộc AB sao cho AN = 2NB. lấy M thuộc AC sao cho MC = 2MA. MB cắt NC ở I.
a) So sánh diện tích tam giác BIC và diện tích tam giác ANIM.
b) Kẻ NH, MK vuông góc BC. So sánh NH và MK
Cho tam giác ABC vuông tại A. Hai cạnh kề với góc vuông là AC dài 15 cm và AB dài 21 cm. Lấy điểm M trên cạnh AC sao cho tỉ số MA = ½ MC. Từ M kẻ đường thẳng song song với AB cắt các cạnh BC tại N. Nối M với N. Tính độ dài đoạn thẳng MN
Cho tam giác ABCvuông tại A, đường cao AH. Tia phân giác của góc ABC cắt AC tại M.
Kẻ MN vuông góc BC (N thuộc BC)
a. Chứng minh:tam giác ABM = tam giác NBM.
b. Chứng minh: BN = BA.
c. Chứng minh: BH < BN.
d. So sánh: CH và CN
Cho tam giác ABC vuông tại A, biết AB=3cm, AC=4cm
Đường phân giác AM (M thuộc BC)
a) tính độ dài BC và BM?
b) kẻ MH vuông góc với AB tại H. Chứng minh tam giác HMB đồng dạng với tam giác ABC?
(vẽ hình, ghi GT-KL)
Cho hình tam giác ABC vuông ở A , cạnh góc vuông AC = 24 m . Trên cạnh góc vuông AB lấy điểm chính giữa M . Từ M kẻ đường thẳng song song với AC và cắt BC ở N . Biết diện tích hình tam giác BMN là 120 m^2 . MN = nửa AC . Tính diện tích hình thang AMNC .
Cho tam giác ABC có AB=AC=5cm, BC=8cm. Kẻ AH vuông góc với BC (H thuộc BC)
a, Chứng minh: HB=HC và BAH=CAH
b, Tính độ dài AH
c, Kẻ HD vuông góc với AB (D thuộc AB) , kẻ HE vuông góc với AC (E thuộc AC). Chứng minh tam giác HDE là tam giác cân
Bài 3: Cho tam giác ABC cân tại A. Trên tia đối của BC lấy điểm M, trên tia đối của CB lấy N sao cho BM=CN
a, Chứng minh: tam giác ABM = tam giác ACN
b, Kẻ BH vuông góc với AM, CK vuông góc với AN( H thuộc AM,K thuộc AN). Chứng minh : AH=AK
c, Gọi O là giao điểm của HB và KC. Tam giác OBC là tam giác gì? Vì sao?
Bài 4: Cho tam giác ABC, kẻ BE vuông góc với AC và CF vuông góc với AB. Biết BE=CF=8 cm. Độ dài các đoạn thẳng BF và BC tỉ lệ với 3 và 5.
a, Chứng minh tam giác ABC là tam giác cân
b, Tính độ dài cạnh đáy BC
c, BE và CF cắt nhau tại O. Nối OA và EF. Chứng minh đường thẳng OA là trung trực của đoạn thẳng EF
Bài 5 : Cho tam giác ABC vuông tại A, BD là tia phân giác của góc ABC (D thuộc AC). Từ D kẻ DE vuông góc với BC tại E. Gọi I là giao điểm của AE và BD. Chứng minh:
a, Tam giác ADB= tam giác EDB
b, BD là đường trung trực của AE
c, Tam giác EDC vuông cân
d, Lấy F thuộc tia đối của tia AB sao cho AF=EC.Chứng minh 3 điểm E, D, F thẳng hàng
Bài 6: Cho tam giác MNP cân tại M. Trên cạnh MN lấy điểm E, trên cạnh MP lấy điểm F sao cho ME=MF. Gọi S là giao điểm của NF và PE. Chứng minh
a, Tam giác MNF= tam giác MPE
b, Tam giác NSE= tam giác PSE
c, EF // NP
d, Lấy K là trung điểm của NP. Chứng minh ba điểm M, S, K thẳng hàng
Bài 7: Cho tam giác ABC vuông tại A. Trên BC lấy E sao cho BE=AB. Qua E kẻ đường thẳng vuông góc với BC cắt AC tại D
a, Chứng minh AD=AE và góc ABD= góc EBD
b, Lấy điểm F thuộc tia đối của tia AB sao cho AF=EC. Chứng minh tam giác DFC cân
c, Gọi O là giao điểm của BD và AE. Chứng minh BD là đường trung trực của AE
d, Chứng minh 3 điểm F, D,E thẳng hàng
Mình đang cần gấp
Cho tam giác ABC có AB=AC=5cm, BC=8cm. Kẻ AH vuông góc với BC (H thuộc BC)
a, Chứng minh: HB=HC và BAH=CAH
b, Tính độ dài AH
c, Kẻ HD vuông góc với AB (D thuộc AB) , kẻ HE vuông góc với AC (E thuộc AC). Chứng minh tam giác HDE là tam giác cân
Bài 3: Cho tam giác ABC cân tại A. Trên tia đối của BC lấy điểm M, trên tia đối của CB lấy N sao cho BM=CN
a, Chứng minh: tam giác ABM = tam giác ACN
b, Kẻ BH vuông góc với AM, CK vuông góc với AN( H thuộc AM,K thuộc AN). Chứng minh : AH=AK
c, Gọi O là giao điểm của HB và KC. Tam giác OBC là tam giác gì? Vì sao?
Bài 4: Cho tam giác ABC, kẻ BE vuông góc với AC và CF vuông góc với AB. Biết BE=CF=8 cm. Độ dài các đoạn thẳng BF và BC tỉ lệ với 3 và 5.
a, Chứng minh tam giác ABC là tam giác cân
b, Tính độ dài cạnh đáy BC
c, BE và CF cắt nhau tại O. Nối OA và EF. Chứng minh đường thẳng OA là trung trực của đoạn thẳng EF
Bài 5 : Cho tam giác ABC vuông tại A, BD là tia phân giác của góc ABC (D thuộc AC). Từ D kẻ DE vuông góc với BC tại E. Gọi I là giao điểm của AE và BD. Chứng minh:
a, Tam giác ADB= tam giác EDB
b, BD là đường trung trực của AE
c, Tam giác EDC vuông cân
d, Lấy F thuộc tia đối của tia AB sao cho AF=EC.Chứng minh 3 điểm E, D, F thẳng hàng
Bài 6: Cho tam giác MNP cân tại M. Trên cạnh MN lấy điểm E, trên cạnh MP lấy điểm F sao cho ME=MF. Gọi S là giao điểm của NF và PE. Chứng minh
a, Tam giác MNF= tam giác MPE
b, Tam giác NSE= tam giác PSE
c, EF // NP
d, Lấy K là trung điểm của NP. Chứng minh ba điểm M, S, K thẳng hàng
Bài 7: Cho tam giác ABC vuông tại A. Trên BC lấy E sao cho BE=AB. Qua E kẻ đường thẳng vuông góc với BC cắt AC tại D
a, Chứng minh AD=AE và góc ABD= góc EBD
b, Lấy điểm F thuộc tia đối của tia AB sao cho AF=EC. Chứng minh tam giác DFC cân
c, Gọi O là giao điểm của BD và AE. Chứng minh BD là đường trung trực của AE
d, Chứng minh 3 điểm F, D,E thẳng hàng
Mình đang cần gấp
cho tam giác abc vuông ở A. M là một điểm trên AB và MA =5cm. Từ M kẻ song song với AC. Cắt cạnh BC tại N.TínhACbiết AB= 15cm, MN =20cm
Cho tam giác ABC vuông góc ở điểm A có cạnh AC = 21cm cạnh AB = 45cm, chọn điểm M trên cạnh AC sao cho MA = 1/3 cạnh AC , tf M kẻ đường song song vói AB cắt BC tại N . Nối MN . Tính độ dài đoạn thẳng MN