Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Người Qua Đường

Cho tam giác ABC vuông ở A có AB = 8, AC = 15. Vẽ đường cao AH. Gọi D là điểm đối xứng với B qua H. Vẽ đường tròn đường kính CD, cắt AC ở E.

a) Chứng minh rằng HE là tiếp tuyến của đường tròn.

b) Tính độ dài HE.

Nguyễn Lê Phước Thịnh
8 tháng 10 2022 lúc 10:57

a: Gọi M là trung điểm của CD

=>ΔCED nội tiếp đường tròn đường kính CD có M là tâm

=>MD=ME

=>ΔMDE cân tại M

=>góc MED=góc MDE

Xét ΔABD có 

AH vừa là đường cao, vừa là đường trung tuyến

nên ΔABD cân tại A

=>AH là phân giác của góc BAD

=>góc BAH=góc DAH

Xét tứ giác AHDE có

góc AHD+góc AED=180 độ

nên AHDE là tứ giác nội tiếp

=>góc DAH=góc DEH

=>góc DEH=góc BAH=góc C

=>góc MEH=góc C+góc CDE=90 độ

=>HE là tiếp tuyến của (M)

b: \(HB=DH=\dfrac{AB^2}{BC}=\dfrac{64}{17}\left(cm\right)\)

CD=BC-2x64/17=161/17(cm)

EM=161/17:2=161/34(cm)

MH=MD+DH=BC/2=8,5cm

=>\(HE=\sqrt{MH^2-EM^2}=\dfrac{120}{17}\left(cm\right)\)


Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
Kim Tae Huynh  123
Xem chi tiết
Cầm Dương
Xem chi tiết
Trịnh Thu Hằng
Xem chi tiết
dieu quang
Xem chi tiết
Nguyễn Trung Dũng
Xem chi tiết
Nguyễn Ngọc Linh
Xem chi tiết
Nguyễn Mạnh Hưng
Xem chi tiết
Zero Two
Xem chi tiết