cho tam giác abc vuông tại a ab lớn hơn ac nội tiếp đường tròn tâm o đường cao ah gọi d là điểm đối xứng với a qua bc gọi k là hình chiếu vuông góc của a lên bc qua h kẻ đường thẳng song song với bc cắt ac tại i đường thẳng bd cắt đường tròn tâm o tại n (n khác b ) tiếp tuyến của đường tròn o tại d cắt đường thẳng bc tại p . chứng minh đường thẳng bc tiếp xúc với đường tròn ngoại tiếp tam giác anp
Cho đoạn thẳng AB và 1 điểm C trên AB với AC=a, BC=b. Đường thẳng đi qua C và vuông góc với AB cắt nửa đường tròn đường kính AB tại P. Dựng đường tròn tâm P bán kính r1, tiếp xúc với CA,CD và tiếp xúc với nửa đường tròn đường kính AB. Dựng đường tròn tâm Q bán kính r2 tiếp xúc với CB,CD và tiếp xúc với nửa đường tròn đường kính AB. Gọi r là bán kính đường tròn nội tiếp tam giác ABD
a/ Tính r1,r2 theo a,b
b/Tìm đẳng thức liên hệ giữa r,r1,r2
Cho tam giác nhọn ABC (AB<AC) ngoại tiếp đường tròn tâm I. Đường tròn (I) tiếp xúc với các cạnh BC,CA,AB lần lượt tại D,E,F. Đường thẳng EF cắt đường thẳng BC tại M. Đường thằng AD cắt đường tròn (I) tại N(khác D). Chứng minh MN là tiếp tuyến của đường tròn (I).
1. Cho đường tròn ( 0; R) đường kính BC, Điểm A thuộc đường tròn. hạ AH vuông góc BC; HE vuông góc AB; HF vuông góc AC. Đường thẳng EF cắt Đường tròn tại M, N.
a Chứng minh tứ giác AEHF là hình chữ nhật
b. Chứng minh AE. AB = A F . AC
c. Chứng minh tam giác AMN cân
d. Cho BC cố định điểm A chuyển động trên cung lớn BC. Chứng minh đường tròn tâm (A. AM) luôn tiếp xúc với một đường thẳng cố định.
2.
Cho ( O ) đường kính AB và điểm C bất kỳ thuộc ( O ) sao cho AC < BC. Kẻ tiếp tuyến tại A của đường tròn, tiếp tuyến này cắt tia BC ở D. Đường thẳng tiếp xúc với đường tròn tại C cắt AD ở E
a) C/m : Tgiac ABC vuông tại C và OE vuông góc AC
b) C/m : BC . BD = 4R\(^2\) và OE // BD
c) C/m : AE = ED
d) Trên tia đối của tia CE lấy điểm F sao cho FC = FB. C/m FB là tiếp tuyến của đường tròn
e) C/m : Tgiac EOF vuông
cho tam giác abc không cân ngoại tiếp đường tròn I. Đường tròn I tiếp xúc với BC, CA, AB tại M, N, P. AM, BN, CP cắt đường tròn I lần lượt tại A', B', C'. Vẽ đường tròn qua A A' tiếp xúc ngoài với I và cắt AB AC tại Ab Ac. Các điểm Ba, Bc và Ca Cb được định nghĩa tương tự. Gọi K là tâm đường tròn ngoại tiếp của tam giác có 3 cạnh chứa Ab Ac, Ba Bc, Ca Cb. H và O lần lượt là trục tâm và tâm đường tròn ngoại tiếp tam giác ABC. Chứng minh AH song song với IK
Cho tam giác ABC ngoại tiếp đường tròn (O),D là điểm tiếp xúc của đường tròn (O) với cạnh BC. Kẻ đường kính DE của đường tròn (O).Qua E vẽ đường thẳng song song với BC cắt AB,AC tại H,K
a) Tính số đo góc góc COK ?
b) Chứng minh tam giác EOK đồng dạng tam giác DCO
c) Tia AE cắt BC tại M.Chứng minh rằng BD=CM
cho hai đường tròn (Ô,R) và( I,r) tiếp xúc trong tại tiếp điểm A ( với R > r) d là tiếp tuyến chung của hai đường tròn tại tiếp điểm A . Dây AB của đường tròn (Ô,R) cắt đường tròn (I,r) tại M . Vẽ dây BC của đường tròn (O,R) sao cho BC tiếp xúc với đường tròn (I,r) tại K và tia BC cắt d tại S( B,O,C ko thẳng hàng) đoạn AC cắt đường tròn (I,r) tại N
Cminh;
a Hai đường thẳngMN vàSB song song với nhau
b, tia AK là yia phân giác của góc BAC
Cho tam giác ABC nội tiếp đường tròn (O) và AB < AC. Đường tròn (I) đi qua B và C, tiếp xúc với AB tại B cắt đường thẳng AC tại D. Chứng minh OA và BD vuông góc với nhau