Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
37. Đường Minh An Thảo.8...

Cho tam giác ABC vuông góc tại A có D,E lần lượt là trung điểm của AC,BC gọi F là điểm đối xứng của E qua D.
a) Chứng minh tứ giác ABED là hình thang vuông.
b) Chứng minh tứ giác AECF là hình thoi.
c) Vẽ HE vuông góc với AB tại H. HE vuông góc với AB tại H,Chứng minh tứ giác ABEH là hình chữ nhật.

Nguyễn Lê Phước Thịnh
10 tháng 1 2022 lúc 8:13

a: Xét ΔABC có 

D là trung điểm của AC

E là trung điểm của BC

Do đó; DE là đường trung bình

=>DE//AB

Xét tứ giác ABED có DE//AB

nên ABED là hình thang

mà \(\widehat{DAB}=90^0\)

nên ABED là hình thang vuông

b: Xét tứ giác AECF có 

D là trung điểm của AC

D là trung điểm của FE

Do đó: AECF là hình bình hành

mà EA=EC
nên AECF là hình thoi

c: Đề sai rồi bạn

Đỗ Tuệ Lâm
10 tháng 1 2022 lúc 8:29

a, xét tam giác ABC có đường t/b ED:

=>ED//AB

xét tứ giác ABED có :

ED//AB 

BAC = 90\(^o\)

vậy ABED là hình thang vuông.

b, vì F đối xứng với E qua D nên:

ED=DF(1)

vì D là trung điểm AC nên:

AD=DC(2)

từ (1) và (2) suy ra :

tứ giác AECF là hình thoi.

c,vì ED //AB 

mà AB vuông góc Ac

=>ED vuông góc AC

<=>EDA là góc vuông 

xét tứ giác ABEH có :

\(EHA=BAC=EDA=90^o\)

vậy ABEH là hình chữ nhật.