Nối C với I.
Tam giác ABC vuông cân tại C (gt) \(\Rightarrow\widehat{A}=45^0\)
I là trung điểm của AB (gt) \(\Rightarrow IA=IB=\frac{1}{2}AB\)
\(\Delta ABC\) vuông tại C có CI là đường trung tuyến ứng với cạnh huyền AB nên CI = 1/2 AB
\(\Delta ABC\)cân tại C có CI là đường trung tuyến nên CI là đường cao đồng thời cũng là đường p/g (tính chất tam giác cân)
\(\Rightarrow CI\perp AB,\widehat{KCI}=\frac{1}{2}\widehat{ACB}=\frac{1}{2}.90^0=45^0\)
Bạn dễ dàng chứng minh được MHCK là hình chữ nhật (vì có 3 góc vuông) và tam giác AHM vuông cân tại H
\(\Rightarrow AH=HM=CK\)
\(\Delta AHI=\Delta CKI\left(c.g.c\right)\Rightarrow\hept{\begin{cases}IH=IK\\\widehat{AIH}=\widehat{CIK}\end{cases}}\)
Ta có: \(\widehat{HIK}=\widehat{HIC}+\widehat{CIK}=\widehat{AIH}+\widehat{HIC}=\widehat{AIC}=90^0\)
Tam giác IHK có: \(IH=IK,\widehat{HIK}=90^0\left(cmt\right)\)
Do đó: \(\Delta IHK\) vuông cân tại I.
Chúc bạn học tốt.