a: Sửa đề: BHCA
Xét tứ giác BHCA có
góc BHA=góc BCA=90 độ
=>BHCA là tứ giác nội tiếp
b: Xét ΔKHA vuông tại H và ΔKCB vuông tại C có
góc K chung
=>ΔKHA đồng dạng với ΔKCB
=>KH/KC=KA/KB
=>KC*KA=KH*KB
c: BHCA là tứ giác nội tiếp
=>góc KHC=góc KAB=45 độ
a: Sửa đề: BHCA
Xét tứ giác BHCA có
góc BHA=góc BCA=90 độ
=>BHCA là tứ giác nội tiếp
b: Xét ΔKHA vuông tại H và ΔKCB vuông tại C có
góc K chung
=>ΔKHA đồng dạng với ΔKCB
=>KH/KC=KA/KB
=>KC*KA=KH*KB
c: BHCA là tứ giác nội tiếp
=>góc KHC=góc KAB=45 độ
cho tam giác ABC vuông tại A, tia phân giác góc B cắt AC tại D. Kẻ AE vuông góc BD(E thuộc cạnh BD), AE cắt BC ở K. Kẻ AH vuông góc BC( H thuộc BC). gọi I là giao điểm của AH và BD. Chứng minh tứ giác IKDA là hình thoi
Cho tam giác ABC vuông tại A (AB<AC).Đường tròn (O) đường kính AB cắt BC tại H .Tia phân giác góc HAC cắt BC tại E và cắt đường tròn (O) tại điểm thứ 2 lf D .Gọi F là giao điểm của AH và BD .chứng minh rằng
a)Tứ giác DEHF nội tiếp
b)Δ ABE cân
c)OD là tiếp tuyến của đường tòn ngoại tiếp tứ giác DEHF
Cho hình vuông ABCD cố định. E là điểm di động trên cạnh CD. Tia AE cắt đường thẳng BC tại F. Tia Ax vuông góc với AE tại A cắt đường thẳng DC tại K.
a) Chứng minh rằng tam giác KAF là tam giác vuông cân.
b) Chứng minh: \(\widehat{CAF}=\widehat{CKF}\)
c) Chứng minh rằng BD đi qua I là trung điểm của KF
Cho hình vuông ABCD. E di động trên đoạn CD (E khác C, D). Tia AE cắt đường thẳng BC tại F, tia Ax vuông góc vói AE tại A cắt đường thẳng DC tại K. Chứng minh:
a, C A F ^ = C K F ^
b, Tam giác KAF vuông cân
c, Đường thẳng BD đi qua trung điểm I của KF
d, Tứ giác IMCF nội tiếp với M là giao điểm của BD và AE
Cho hình vuông ABCD. Lấy điểm E thuộc cạnh BC, Với E ko trùng B và E ko trùng C. Vẽ EF vuông góc với AE, Với F thuộc CD. Đường thẳng AF cắt đg thẳng BC tại G. Vẽ đg thẳng a đi qua điểm A và Vuông góc với AE, đg thẳng a cắt đg thẳng DE tại điểm H.
1/ chứng minh AE/AF = CD/DE
2/ chứng minh rằng tứ giác AEGH là tứ giác nội tiếp
3/ gọi b là tiếp tuyến của đg tròn ngoại tiếp tam giác AHE tại E, biết b cắt đg trung trực của đoạn EG tại K. Chứng minh KG là tiếp tuyến của đg tròn ngoại tiếp tam giác AHE
bài 1: Cho tam giác MNP cân tại M có đáy nhỏ hơn cạnh bên. Tam giác nội tiếp (O) bán kính R. Tiếp tuyến tại N và P của đường tròn lần lượt cắt tia MP, MN tại E và D. Hỏi:
a, chứng minh NE bình = EP. EM
b, Chứng minh tứ giác DEPN nội tiếp.
bài 2: Cho (O), lấy A không thuộc đường tròn. Đường thẳng AO giao với (O) tại B, C (AB < AC). Qua A vẽ đường thẳng không đi qua O cắt (O) tại 2 điểm D và E (AD < AE). Đường vuông góc với AB tại A cắt đường thẳng CE tại F.
a, Chứng minh tứ giác ABEF nội tiếp
b, Gọi M là giao điểm thứ 2 của FB với (O). Chứng minh DM vuông góc AC.
c, CE . CF + AD . AE = AC bình
Cho tam giác ABC vuông cân tại C, CA=CB=a. E thuộc cạnh BC. Qua B kẻ đường thẳng vuông góc với AE tại H cắt AC tại K.
Chứng minh BE.BC + AC . AK không đổi
Cho đường tròn (O: R) có hai đường kính AB và CD vuông góc với nhau. Lấy điểm K thuộc cung nhỏ AC, kẻ KH vuông góc AB tại H. Tia AC cắt HK tại I, tia BC cắt HK tại E, nối AE cắt đường tròn (O; R) tại F.
1. Chứng minh tứ giác BHFE là tứ giác nội tiếp.
2. Chứng minh: EF EA EC EB . . .
3. Tính theo R diện tích FEC khi H là trung điểm của OA.
4. Cho K di chuyển trên cung nhỏ AC. Chứng minh đường thẳng FH luôn đi qua một điểm cố định.
giúp mình ý 3 với ạ
Cho tam giác ABC vuông cân tại A. Trong góc ABC kẻ tia By bất kì cắt AC tại D ( D không trùng A và C). Qua C kẻ đường thẳng vuông góc với By tại E. Gọi F là giao điểm của AB và CE. a. Chứng minh tứ giác ABCE nội tiếp trong một đường tròn b. Chứng minh tia EA là tia phân giác của góc DEF c. Tính số đo góc BFD.