Cho tam giác ABC vuông cân tại A. Trên AB lấy M. Kẻ BD vuông góc với CM, BD cắt CA tại E.Chứng minh rằng:
a. EB.ED = EA.EC
b. BD . BE + CA. CE = BC2
c. Góc ADE = 45o
Cho tam giác ABC vuông cân , góc A bằng 90 độ. Trên cạnh AB lấy điểm M bất kì , kẻ BD vuông góc với CM , BD cắt AC ở E . Chứng minh rằng
a) chứng minh EB.ED= EA.EC
b) BD.BE+ CA. CE= BC2
c) chứng minh góc ADE bằng 45 độ
Cho tam giác ABC cân tại A. Kẻ BD vuông góc với AC, CE vuông góc với AB. BD và CE cắt nhau tại H. Chứng minh:
a, Tam giác ABD = tam giác ACE.
b, Tam giác BHC cân.
c, ED // BC
d, AH cắt BC tại K, trên HK lấy M sao cho K là trung điểm của HM. Chứng minh tam giác ACM vuông.
cho tam giác abc vuông cân tại a. trên ab lấy điểm e ,trên tia đối của tia ca lấy điểm f sao cho be=cf. vẽ hình bình hành befd .gọi i là giao điểm của ef và bc . qua e kẻ đường thẳng vuông gics với ab cắt bi tại k
a) chứng minh : ekfc là hình bình hành
b) qua i kẻ đường thẳng vuông góc với af cắt bd tại m. Chứng minh ai=bm
c) chứng minh c đối xứng với d qua mf
d) tìm vị trí của e trên ab để a,i,d thẳng hàng
Cho tam giác ABC vuông cân tại A. Trên đoạn thẳng AB lấy điểm E, trên
tia đối của tia CA lấy điểm F sao cho BE = CF . Vẽ hình bình hành BEFD. Gọi I là giao điểm
của EF và BC. Qua E kẻ đường thẳng vuông góc với AB cắt BI tại K.
a) Chứng minh rằng : Tứ giác EKFC là hình bình hành
b) Qua I kẻ đường thẳng vuông góc với AF cắt BD tại M. CMR : AI = BM
c) CMR : C đối xứng với D qua MF
d) Tìm vị trí của E trên AB để A, I, D thẳng hàng.
Cho tam giác abc vuông cân tại A. Trên tia đối của tia CA lấy điểm F, trên AB lấy điểm E sao cko BE=CF. Vẽ hình bình hành BEFD.
a) cm: DC vuông góc BC
b) gọi I là giao điểm của EF và BC. Chứng minh AI= 1/2 BD
c) Qua I vẽ đùơng thẳng vuông góc AF cắt BD tại M. Cm: MICF là hình thang cân
d Tìm vị trí của E trên AB để A,I,D thẳng hàng
Bài 1. Cho tam giác ABC cân tại A ( góc A< 90°). Kẻ BD vuông góc với AC tại D, kẻ CE vuông góc vói AB tại E.
a) Chứng minh tam giác ADE cân.
b) Chứng minh DE// BC.
c) Gọi I là giao điểm của BD và CE. Chứng minh IB = IC
d) Chứng minh. AI vuông góc BC.
Bài 2. Cho tam giác ABC cân tại A. Trên tia đối của tia BA lấy điểm D trên tia đối của tia CA lấy điểm E sao cho BD = CE, Gọi I là giao điểm của BE và CD.
a) Chứng minh IB = IC, ID = IE.
b) Chứng minh DE // BC.
c) Gọi M là trung điểm của BC. Chứng minh ba điểm A, M, I thẳng hàng
Cho tam giác ABC vuông tại A. Trên đoạn thẳng AB lấy điểm E, trên tia đối của tia CA lấy điểm F sao cho BE=CF. Vẽ hình bình hành BEFD. Gọi I là giao điểm của EF và BC. Qua E kẻ đường vuông góc với AB cắt BI tại K.
a) CMR tứ giác EKFC là hình bình hành
b) Qua I kẻ đường vuông góc với AF cắt BD tại M. CMR AI=BM
c) CMR C đối xứng với D qua MF
d)Tìm vị trí của E trên AB để A,I,D thẳng hàng
Cho tam giác ABC cân tại A. Trên cạch AB lấy M . Kẻ BD vuông góc với CM cắt CA ở E . CM
a)EB.ED=EA.EC
b)AED=45o
c)BD.BE+CA.CE=BC2