Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thùy Linh

Cho tam giác ABC vuông cân tại A, tia phân giác của góc B và góc C cắt AC và AB lần lượt tại E và D.

a) Chứng minh BE = CD, AD = AE.

b) Gọi I là giao điểm của BE và CD, AI cắt BC tại M. Chứng minh tam giác MAC vuông cân.

c) Từ A và D vẽ các đường thẳng vuông góc với BE. Các đường này cắt BC tại K và H. Chứng minh HK = KC.

Cô Hoàng Huyền
1 tháng 2 2018 lúc 10:48

A A C C B B E E D D I I M M G G J J H H K K

a) Do tam giác ABC vuông cân nên \(\widehat{ABC}=\widehat{ACB}\Rightarrow\widehat{ABE}=\widehat{ACD}\)

Xét tam giác vuông ABE và tam giác vuông ACD có:

AB = AC (gt)

\(\widehat{ABE}=\widehat{ACD}\)

\(\Rightarrow\Delta ABE=\Delta ACD\)  (Cạnh góc vuông - góc nhọn kề)

\(\Rightarrow BE=CD;AE=AD\)

b) I là giao điểm của hai tia phân giác góc B và góc C của tam giác ABC nên AI cũng là phân giác góc A.

Do tam giác ABC cân tại A nên AI là phân giác đồng thời là đường cao và trung tuyến.

Vậy thì \(\widehat{AMC}=90^o;BM=MC=AM\)

Từ đó suy ra tam giác AMC vuông cân tại M.

c) Gọi giao điểm của DH, AK với BE lần lượt là J và G. 

Do DH và AK cùng vuông góc với BE nên ta có 

\(\Delta BDJ=\Delta BHJ;\Delta BAG=\Delta BKG\Rightarrow BD=BH;BA=BK\)

\(\Rightarrow HK=AD\)

Mà AD = AE nên HK = AE.    (1)

Do tam giác BAK cân tại B, có \(\widehat{B}=45^o\Rightarrow\widehat{BAK}=\frac{180^o-45^o}{2}=67,5^o\)

\(\Rightarrow\widehat{GAE}=90^o-67,5^o=22,5^o=\frac{\widehat{IAE}}{2}\)

Suy ra AG là phân giác góc IAE.

Từ đó ta có \(\widehat{KAC}=\widehat{ICA}\left(=22,5^o\right)\)

\(\Rightarrow\Delta AKC=\Delta CIA\left(g-c-g\right)\Rightarrow KC=IA\)    

Lại có tam giác AIE có AG là phân giác đồng thời đường cao nên nó là tam giác cân, hay AI = AE. Suy ra KC = AE  (2)

Từ (1) và (2) suy ra HK = KC.


Các câu hỏi tương tự
Nguyễn Ngọc Ánh
Xem chi tiết
Quỳnh Anh
Xem chi tiết
Minato Namikaze
Xem chi tiết
Lê Minh Tuấn
Xem chi tiết
Nguyên Trinh Quang
Xem chi tiết
Phạm Xuân Sơn
Xem chi tiết
Việt Nam Vô Địch
Xem chi tiết
chuột nhà
Xem chi tiết
Dương Quân Hảo
Xem chi tiết