Cho tam giác ABC vuông tại A . Tia phân giác của góc B cắt cạnh AC tại D. Đường cao AH cắt BD tại I
a.chứng minh 2 tam giác ABC đồng dạng với tam giác HBA
b.cho AB =9cm,AC=12cm.tính BC,BH,AH
c.gọi E là hình chiếu của điểm C trên đường thẳng BD. Chứng minh BI.BE=BH.BC
Cho tam giác ABC vuông tại A có AB =9cm AC=12cm tia phân giác góc A cắt BC tại D từ D kẻ DE vuông góc Ac E thuộc AC a, tính tỉ số BD phần DC độ dài BD và CD b,chứng minh tam giác ABC đồng dạng tam giác EDC
Cho tam giác ABC vg tại A, có AB=3cm, AC=5cm,đường p/g AD.Đường vg góc với DC cắt AC ở E.
a) CM ABC~DEC
b) Tính BC,BD
c) Tính AD.
cho tam giác ABC vuông tại A. vẽ về phía ngoài tam giác đó các tam giác ABD vuông cân ở B, ACE vuông cân ở C. CD cắt AB tại M, BE cắt AC tại N. tính DM biết AM=3, AC=4, MC=5
Cho tam giác ABC vuông tại A , đường phân giác AD . Cho biết BD=9cm, CD=12cm . Tính AB, AC
Cho tam giác ABC vuông tại A , đường phân giác AD . Cho biết BD=9cm, CD=12cm . Tính AB, AC
Cho tam giác ABC vuông tại A, AB = 9cm, AC=12cm. Tia phân giác của góc A cắt BD tại D. Từ D kẻ DE vuông góc với AC.
a)Tính độ dài BD, CD và DE
b)Tính diện tích 2 tam giác ABD và ACD
Bài 1: Cho tam giác abc cân ở a , phân giác BD , BC=10cm , AB=15
a) tính AD , DC
b) đg phân giác ngoài b của tam giác abc cắt AC tại D' . Tính D'
cần phần b:((
Tam giác ABC , góc A = 900 , AB = 9cm , AC = 12cm, Phân giác góc A cắt BC tại D , kẻ DE vuông góc với AC ( E thuộc AC )
a, tính tỉ số BD/DC , độ dài BD , CD
b. Cm: tam giác ABC đồng dạng tam giác EDC
c, tính DE và tỉ số diện tích tam giác ABD và tam giác ADC