Cho hình bình hành ABCD có AB = a, BC = b. Qua D kẻ đường thẳng d cắt AB, BC lần lượt tại M và N. Tính tích AM.CN theo a và b.
Cho tam giác ABC nhọn (AB < AC). Đường tròn (O) đường kính BC cắt AB và AC lần lượt tại E và D. Gọi H là giao điểm của BD và CE . Tia AH cắt BC tại F.
a) Chứng minh: HB . HD = HC . HE và AF vuông góc với BC.
b) Gọi M là trung điểm của CH. Chứng minh tứ giác OMEF là tứ giác nội tiếp.
c) Đoạn thẳng DF cắt CE tại N . Qua N vẽ đường thẳng vuông góc với CE cắt BC và BD lần lượt tại I và K . Chứng minh N là trung điểm của IK
cho ▲ABC nhọn .Một đường tròn đi qua B và C cắt AB và AC tại E và F, BF cắt CE tại D. Lấy điểm K sao cho tứ giác DBKC là hình bình hành
a. chứng minh ▲AKC đồng dạng với tam giác ADE
b. vẽ DM vuông góc với AB,DN vuông góc với AC (M∈AB,N∈AC).Chứng minh MN vuông góc với AK
Cho tam giác ABC. Một đường thẳng cắt các cạnh BC, AC theo thứ tự ở D và E và cắt đường thẳng BA ở F. Vẽ hình bình hành BDEH. Đường thẳng đi qua F và song song với BC cắt HA tại I. Chứng minh FI = DC
Cho tam giác ABC. Một đường thẳng cắt các cạnh BC, AC theo thứ tự ở D và E và cắt đường thẳng BA ở F. Vẽ hình bình hành BDEH. Đường thẳng đi qua F và song song với BC cắt HA tại I. Chứng minh FI = DC
Cho tam giác \(ABC\). Từ điểm \(M\) thuộc cạnh \(AC\) kẻ các đường thẳng song song với các cạnh \(AB\) và \(BC\) cắt \(BC\) tại \(E\) và \(AB\) tại \(F\). Hãy xác định vị trí của \(M\) trên \(AC\) sao cho hình bình hành \(BEMF\) có diện tích lớn nhất.
cho tam giác ABC có góc A=90 độ . Một đường thẳng song song với cạnh BCcắt cá cạnh AB và AC theo thứ tự M và N , đường thẳng qua N và song song với AB cắt BC tại D , cho biết AM=6cm,AN=8cm,Bm=4cm
a> Tính độ dài các đoạn thẳng MN , NC và BC
b> Tính diện tích hình bình hành BMND
cho tam giác abc nội tiếp đường tròn (o) tiếp tuyến tại B và C của đường tròn cắt nhau tại T. Các điểm M, N lần lượt thuộc các tia BT, CT sao cho BM=CN=BC. Đường thẳng MN cắt CA, AB lần lượt tại E, F. Gọi BM cắt CF tại Q và CN cắt BE tại P. Chứng minh rằng AP=AQ
Cho (O;R) đường kính BC và A nằm trên đường tròn sao cho AB < AC . H là hình chiếu của A trên BC . Gọi M và N lần lượt là hình chiếu của H lên AB ,AC, MN cắt BC tại D , AH cắt MN tại I . a, chứng minh tứ giác BMNC nội tiếp và DM.DN=DB.DC b, đường thẳng vuông góc MN tại I ,cắt đường thẳng qua O vuông góc BC tại Q . QH cắt (O) tại P . Tính độ dài IQ theo R và chứng minh 3 điểm D,A,P thẳng hàng