Lời giải:
Áp dụng định lý Pitago:
$32=BH^2=AB^2-AH^2$
$CH^2=AC^2-AH^2=81-AH^2$
$\Rightarrow CH^2-32=81-AB^2$
hay $CH^2-32=81-(BC^2-AC^2)=81-(BC^2-81)=162-BC^2$
hay $CH^2=194-BC^2=194-(\sqrt{32}+CH)^2$
$2CH^2+2\sqrt{32}CH+32=194$
$2CH^2+2\sqrt{32}CH-162=0$
$\Rightarrow CH=\sqrt{89}-2\sqrt{2}$ (do $CH>0$)
$\Rightarrow BC=CH+BH=\sqrt{89}-2\sqrt{2}+\sqrt{32}\sqrt{89}+2\sqrt{2}$