Cho tam giác ABC và số thực k > 0; G là trọng tâm của tam giác ABC. Tập hợp các điểm M sao cho M A → + M B → + M C → = k là:
A. Đường tròn ngoại tiếp tam giác ABC
B. Đường tròn tâm G, bán kính k/3
C. Đường tròn tâm G, bán kính k
D. Đường tròn tâm G, bán kính 3k
Cho A(1; 2), B(-3; 1) và C(4; -2). Tìm tập hợp các điểm M sao cho MA2 + MB2= MC2
Cho tam giác đều ABC cạnh a.
a, Cho M là một điểm trên đường tròn ngoại tiếp tam giác ABC. Tính MA2 + MB2 + MC2 theo a.
b, Cho đường thẳng d tùy ý, tìm điểm N trên đường thẳng d sao cho NA2 + NB2 + NC2 nhỏ nhất.
Trong mặt phẳng tọa độ Oxy cho hai điểm A( 1; -1) và B(3; 2).Tìm M thuộc trục tung sao cho M A 2 + M B 2 nhỏ nhất.
A. M(0; 1)
B. M (0; -1)
C. M 0 ; 1 2 .
D. M 0 ; - 1 2 .
Cho hai điểm phân biệt A, B cố định và số thực k > 0. I là trung điểm của AB. Tập hợp các điểm M sao cho M A → + M B → = k là:
A. Đường thẳng AB
B. Đường tròn tâm I, bán kính k/2
C. Đường tròn tâm I, bán kính k
D. Đường tròn tâm I, bán kính 2k
Cho tứ giác ABCD .M và N là điểm di động trên AB và CD sao cho AM/AB =CN/CD =k. Tìm tập hợp trung điểm I của MN
Cho tam giác ABC có trọng tâm G. Gọi H là chân đường cao hạ từ A sao cho \(\overrightarrow{BH}=\frac{1}{5}\overrightarrow{HC}\). Gọi M là điểm di động trên BC sao cho \(\overrightarrow{BM}=k.\overrightarrow{BC}\). Tìm số thực k sao cho \(\left|\overrightarrow{MA}+\overrightarrow{GC}\right|\) đạt giá trị nhỏ nhất.
Cho hình chữ nhật ABCD và số thực k >0. Tập hợp các điểm M thỏa mãn đẳng thức M A → + M B → + M C → + M D → = k là
A. một đoạn thẳng.
B. một đường thẳng.
C. một đường tròn.
D. một điểm.
Cho tam nhọn ABC với AB<AC.Gọi M, N lần lượt là trung điểm của AB, AC. AD là đường cao của tam giác ABC. K là điểm thuộc canh MN sao cho BK=CK. Tia KD cắt đường tròn ngoại tiếp tam giác ABC tại Q
Cm rằng các điểm C, N, K và Q cùng nằm trên 1 đường tròn
Cho tam giác ABC. Tập hợp các điểm M sao cho M A → + M B → = M C → + M B → | là:
A. Đường trung trực của BC
B. Đường tròn tâm I, bán kính R = 2AB với I nằm trên cạnh AB sao cho IA = 2IB
C. Đường trung trực của EF với E, F lần lượt là trung điểm của AB và BC
D. Đường tròn tâm I, bán kính R = 2AC với I nằm trên cạnh AB sao cho IA = 2IB