cho tam giác abc có m nằm trong tam giác , am,bm,cm cắt bc,ac,ab tại i,j,k đường thẳng qua m song song bc cắt ik tại e và ij tại f chứng minh me=mf
cho tam giác abc có m thuộc miền trong tam giác . i,j,k lần lươt là giao điểm của am,bm,cm với bc,ac,ab. Đường thẳng qua m csong song với bc cắt ik,ij tai e,f. CM me=mf
Cho tam giác ABC nhọn có đường cao AH. Lấy tùy ý điểm M trên đoạn AH (M khác A, H). BM, CM lần lượt cắt AC và AB tại D và E. Đường thẳng qua A song song với BC lần lượt cắt HD và HE tại I và K. Chứng minh tam giác HIK cân.
Cho tam giác ABC và điểm O nằm trong tam giác. AO, BO, CO cắt BC, CA, AB lần lượt tại D, E, F. Đường thẳng qua O song song với BC cắt DE, DF lần lượt tại M, N. Chứng minh rằng OM = ON
Cho tam giác ABC . M là điểm nằm trong tam giác . Các tia AM,BM,CM cắt BC, CA,AB tại N,P,Q. Qua M kẻ đường song song với BC cắt NP , NQ tại E và F. Chứng minh :
a. ME=MF
b. Giả sử AM vuông góc với BC. Chứng minh góc MNP= góc MNQ
Cho tam giác ABC. Kẻ trung tuyến AM (M thuộc BC). Lấy I thuộc cạnh AM, Qua I kẻ đường thẳng song song với BC cắt AB, AC lần lượt tại E và F. Chứng minh EI= FI.
Cho tam giác ABC và d là đường thẳng tùy ý qua B. Qua E là điểm bất kì trên AC, vẽ đường thẳng song song với AB và BC, lần lượt cắt d tại M và N. Gọi D là giao điểm của ME và BC. Đường thẳng NE cắt AB và MC lần lượt tại F và K. Chứng minh:
a) Δ A F N ∽ Δ M D C ; b) A N ∥ M K .
Bài1:Cho tam giác ABC,M là điểm nằm trong tam giác. Gọi D là giao điểm của AM và BC, E là giao điểm của BM và CA. F là giao điểm của CM và AB, đường thẳng đi qua M và song song với BC cắt DE, DF lần lượt tại K và I. Cmr MI=MK.
Bài 2:Cho tam giác ABC, các đường trung tuyến BM, CN cắt nhau tại G, K là điểm trên cạnh BC, đường thẳng đi qua K và song song CN cắt AB ở D, đường thẳng đi qua K và song song với BM cắt AC ở E. Gọi I là giao điểm của KG và DE. Cmr I là trung điểm của DE.
Bài 3:Cho tam giác ABC đều. Gọi M, N là các điểm trên AB, BC sao cho BM=BN. Gọi G là trọng tâm của tam giác BMN. I là trung điểm của AN, P là trung điểm của MN.Cmr:
a, tam giác GPI và tam giác GNC đồng dạng.
b, IC vuông góc với GI.
Bài 4:Cho tam giác ABC vuông tại A, đường cao AH. I là trung điểm của AC, F là hình chiếu của I trên BC. Trên nửa mặt phẳng bờ là đường thẳng chứa AC, vẽ Cx vuông góc với AC cắt IF tại E. Gọi giao điểm của AH, AE với BI theo thứ tự G và K. Cmr:
a,Tam giác IHE và tam giác BHA đồng dạng.
b, Tam giác BHI và tam giác AHE đồng dạng.
c, AE vuông góc với BI.
LÀM ƠN HÃY GIÚP MÌNH NHA. MÌNH ĐANG RẤT VỘI. THANK KIU CÁC BẠN!!!😘😘😘