Câu 4(1,5điểm): Cho hình vuông ABDC tâm O cạnh bằng a.
a) Tính độ dài của :vector BD– vector BC.
b) Chứng minh: vector MA+vector MB+ vector MC+vector MD=4 vector MO
c) Tìm tập hợp tất cả các điểm M sao cho |vector MA+vector MB+vector MC|=1.
Cho tam giác ABC có AB=4, AC = 5 , BAC =120°. G là trọng tâm của tam giác ABC, điểm E thỏa mãn vector AE=2/3 vector EC
a) Biểu diễn BE theo AB,AC.
b) Tìm tập hợp điểm I thỏa mãn đẳng thức vec tơ |IA+IG|=|IA–IG|.
c) M là một điểm khác G thỏa(GC-GB)(MA+MB+MC)=0. Chứng minh MG vg BC.
vector het nha
1.Cho tam giác ABC với BC=a, CA=b, AB=c. Tìm điểm I sao cho: a nhân vector IA + b nhân vector IB +c nhân vector IC= vector 0.
2.Cho tam giác ABC, đường tròn (I) nội tiếp tam giác tiếp xúc với các cạnh BC, CA, AB lần lượt tại M, N, P. Chứng minh rằng:
a nhân vector IM +b nhân vector IN +c nhân vector IP=vector 0.
Cứu em với mai kiểm tra rồi.
Cho tam giác abc và hai điểm D và E
dựng hình và xác định điểm N thỏa :
a) vector NA trừ 3 lần vector NB bằng vector 0
b) vector NA + vector NB + vector NC = vector AB+ vector AC
c) 2 lần vector NA trừ 3 lần vector NB cộng 4 lần vector NC bằng vector 0
d) vector NA cộng vector NB cộng vector NC cộng 3 lần vector ND cộng vector NE bằng vector 0
Cho tam giác ABC . M là trung điểm của AC, N là trung điểm BM
Biểu diễn vector AP theo vector AB, AC
Cho hình thang vuông tại A và B, AB=AD=a, BC=2a. Gọi I trung điểm BC. Tính đọ dài các vector
1. a= VectorBA - vectorBD - VectorDC
2. b= vector DB - vectorDA+ vector IC
Cho hnc ABCD có AB=a,AD=2a.Gọi M là trung điểm của vector AB,N là điểm trên cạnh AD. Sao cho vector AD = k vector AN .tìm CM vuông góc với BN
Cho tam giác ABCcó G là trọng tâm. Gọi H là chân đường cao hạ từ A sao cho \(\overrightarrow{BH}=\frac{1}{3}\overrightarrow{HC}\). Điểm M di động nằm trên BC sao cho \(\overrightarrow{BM}=x\overrightarrow{BC}\). Tìm x sao cho độdài của vector \(\overrightarrow{MA}+\overrightarrow{GC}\) đạt giá trị nhỏ nhất.
Cho hình bình hành ABCD với M và N lần lượt là trung điểm của BC và AD .Tìm tổng của hai vector sau:
a) AD→ và DC→
b)NA→ và ND→
c)NC→ và MC→
d)AM→ và CD→