Cho hình bình hành ABCD với M và N lần lượt là trung điểm của BC và AD .Tìm tổng của hai vector sau:
a) AD→ và DC→
b)NA→ và ND→
c)NC→ và MC→
d)AM→ và CD→
Cho hình chữ nhật ABCD có AB = a, AD = a\(\sqrt{2}\)
a. Tính độ dài của vector \(\overrightarrow{DC}\) +\(\overrightarrow{BD}\) +\(\overrightarrow{AB}\)
b. Xác định điểm M sao cho \(\overrightarrow{DC}\) +\(\overrightarrow{BD}\) +\(\overrightarrow{AB}\) = \(\overrightarrow{BM}\)
Cho hình thang vuông tại A và B, AB=AD=a, BC=2a. Gọi I trung điểm BC. Tính đọ dài các vector
1. a= VectorBA - vectorBD - VectorDC
2. b= vector DB - vectorDA+ vector IC
1.Cho tam giác ABC với BC=a, CA=b, AB=c. Tìm điểm I sao cho: a nhân vector IA + b nhân vector IB +c nhân vector IC= vector 0.
2.Cho tam giác ABC, đường tròn (I) nội tiếp tam giác tiếp xúc với các cạnh BC, CA, AB lần lượt tại M, N, P. Chứng minh rằng:
a nhân vector IM +b nhân vector IN +c nhân vector IP=vector 0.
Cứu em với mai kiểm tra rồi.
Cho tam giác ABC . M là trung điểm của AC, N là trung điểm BM
Biểu diễn vector AP theo vector AB, AC
Câu 4(1,5điểm): Cho hình vuông ABDC tâm O cạnh bằng a.
a) Tính độ dài của :vector BD– vector BC.
b) Chứng minh: vector MA+vector MB+ vector MC+vector MD=4 vector MO
c) Tìm tập hợp tất cả các điểm M sao cho |vector MA+vector MB+vector MC|=1.
trong mặt phẳng hệ tọa độ Oxy cho hình thang cân ABCD có hai đường chéo BD và AC vuông góc với nhau tại H và AD 2 BC. Gọi M là điểm nằm trên cạnh AB sao cho AB 3 AM N là trung điểm HC. biết B 1 3 đường thẳng HM đi qua T 2 3 đường thẳng DN có phương trình x 2y 2 0 . tìm tọa độ các điểm A,C,D
Cho tam giác ABC trọng tâm G.gọi M là trung điểm của AG a) tính 4 vector MA + vector MB + vector MC b) tính vector AG.vector BC