Ta có: \(BE=\frac14BC\)
=>\(S_{AEB}=\frac14\cdot S_{ABC}\)
Ta có: AD+BD=AB
=>\(BD=AB-AD=AB-\frac14AB=\frac34BA\)
=>\(S_{BDE}=\frac34\cdot S_{BDA}=\frac34\cdot\frac14\cdot S_{ABC}=\frac{3}{16}\cdot S_{ABC}\)
Ta có: \(BE+CE=BC\)
=>\(CE=BC-BE=BC-\frac14BC=\frac34BC\)
=>\(S_{AEC}=\frac34\cdot S_{ABC}\)
Vì \(CF=\frac14CA\)
nên \(S_{CFE}=\frac14\cdot S_{AEC}=\frac14\cdot\frac34\cdot S_{ABC}=\frac{3}{16}\cdot S_{ABC}\)
TA có: AF+FC=AC
=>\(AF=AC-CF=AC-\frac14AC=\frac34AC\)
=>\(S_{BFA}=\frac34\cdot S_{BCA}\)
Vì \(AD=\frac14AB\)
nên \(S_{ADF}=\frac14\cdot S_{ABF}=\frac14\cdot\frac34\cdot S_{ABC}=\frac{3}{16}\cdot S_{ABC}\)
Ta có: \(S_{ADF}+S_{CFE}+S_{BDE}+S_{DEF}=S_{ABC}\)
=>\(S_{DEF}=S_{ABC}\left(1-\frac{3}{16}-\frac{3}{16}-\frac{3}{16}\right)=\frac{7}{16}\cdot S_{ABC}=\frac{7}{16}a^2\)