Cho tam giác ABC phân giác AD. Vẽ đường tròn (O) đi qua A, D và tiếp xúc với BC tại D. Đường tròn này cắt AB, AC lần lượt tại E và F. Chứng minh:
a, EF song song BC
b, A D 2 = A E . A C
c, AE.AC = AB.AF
Cho tam giác ABC phân giác AD. Vẽ đường tròn (O) đi qua A, D và tiếp xú với BC tại D. Đường tròn này cắt AB,AC lần lượt tại E và F. Chứng minh:
a)
Cho tam giác ABC phân giác AD. Vẽ đường tròn (O) đi qua A, D và tiếp xúc với BC tại D. Đường tròn này cắt AB, AC lần lượt tại E và F. Chứng minh :
a) EF// BC ( đã làm)
b) AD2 = AE.AC (chưa làm được)
c) AE.AC= AB.AF (đã làm được)
Tôi nhờ các bạn giải hộ câu b. Xin cảm ơn các bạn
Cho tam giác ABC có đường phân giác AD . Vẽ đường tròn (O) đi qua hai điểm A,D và tiếp xúc BC tại D.Đường tròn này cắt BC tại D.Đường tròn này cắt AB,AC tại E,F.Chứng Minh:
a) EF//BC
b) AD\(^2\) =AE.AC
c) AE.AC = AB.AF
cho tam giác ABC phân giác AD vẽ đg ròn tâm O đi qua A và D tiếp xúc với BC tại D đg tròn cắt AB ,AC tại E và F
a,cm EF//BC
b,AE.AC=\(AD^2\)
c, AE.AC=AB.AF
Cho tam giác ABC có AD là phân giác của góc A . Vẽ đường tròn O đi qua A và D đòng thời tiếp xúc BC tại D . Dường tròn này cắt AB , AC ở E và F.
CMR : a) EF song song AB
b) tam giác AED đòng dạng ADC , tam giác AFD đồng dạng ADB
c) AE.AC=AF.AB=AD^2
Cho tam giác ABC (AB < AC) nội tiếp đường tròn (O; R) đường kính BC. Vẽ đường cao AH của tam giác ABC. Đường tròn tâm K đường kính AH cắt AB, AC lần lượt tại D và E
a, Chứng minh tứ giác ADHE là hình chữ nhật và AB.AD = AE.AC
b, Cho biết BC = 25cm và AH = 12cm. Hãy tính diện tích xung quanh và thể tích của hình tạo thành bởi khi cho tứ giác ADHE quay quanh AD
Cho tam giác ABC, phân giác AD. Đường tròn tâm O qua A và tiếp xúc
với BC tại D cắt các cạnh AB và AC lần lượt ở E và F.
a) Chứng minh: EF // BC
b) Chứng minh: AB. BE = BD 2
c) Chứng minh: ADF đồng dạng với ABD
d) Chứng minh: DF là tiếp tuyến của đường tròn đi qua A, B, D.
Cho tam giác ABC nhọn có AB<AC nội tiếp (O), gọi AD là đường kính của (O), tiếp tuyến tại D của (O) cắt BC tại M, đường thẳng MO cắt AB và AC lần lượt tại E, F
a) Chứng minh : MD2=MC.MB
b) Gọi H là trung điểm của BC, qua B vẽ đường thẳng song song với MO đường thẳng này cắt AD tại P. Chứng minh đường tròn ngoại tiếp tam giác BHD đi qua P
c) Chứng minh O là trung điểm của EF