cho tam gíc ABC nội tiếp đường tròn (O) bán kính R có góc C = 45 độ
a. tính diện tích hình quạt tròn AOB (ứng với cung nhỏ AB)
b. tính diện tích hình viên phân AmB (ứng với cung nhỏ AB)
Cho tam giác ABC nội tiếp trong đường tròn (O;R) có góc C = 45 ° . Tính diện tích hình viên phân AmB (ứng với cung nhỏ AB)
Cho (O;R). Từ điểm P nằm ngoài đường tròn kẻ các tiếp tuyến PA, PB (A, B là 2 tiếp điểm) và kẻ đường kính AC của đường tròn
a) C/m PAOB nội tiếp
b) C/m PO // BC. Cho OP = 2R. Tính góc AOB và diện tích hình quạt tròn AOB (ứng với cung nhỏ AB)
1. Cho tam giác ABC có A= 60o nội tiếp trong đường tròn (O;R)
a) tính số đo cung BC
b) tính độ dài dây cung BC và độ dài cung BC theo R
c) tính diện tích hình quạt ứng với góc ở tâm BOC theo R
2. CHo (O;R) và dây AB= R\(\sqrt{2}\)
a) tính số đo cung AB, số đo góc AOB
b)| tính theo R độ dài cung AB
tính diện tích của hình viên phân giới hạn bởi dây AB và cung nhỏ AB theo R
Cho nửa đường tròn tâm O, đường kính BC = 2a, A là điểm trên nửa đường tròn, góc ACB bằng (00 < <900 ). Đường tròn đường kính AB cắt BC ở D (D khác B), tiếp tuyến với đường tròn này ở D cắt AC tại I. Vẽ DEAB và DFAC (E thuộc AB, F thuộc AC).
Tính góc AOB theo
Chứng minh rằng: BEFC là một tứ giác nội tiếp.
Tính diện tích hình quạt tròn (ứng với cung nhỏ AB của đường tròn tâm O đường kính BC) và diện tích tam giác AOB.
Chứng minh rằng: DI là đường trung tuyến của tam giác ADC.
Tính khi DI // EF
Cho tam giác ABC nội tiếp đường tròn (O; 3cm). Tính diện tích hình quạt tròn giới hạn bởi hai bán kính OA, OC và cung nhỏ AC khi A B C ^ = 40 0
cho đường tròn o và dây cung ab với góc aob=120 hai tiếp tuyến tại a và b của đường tròn o cắt nhau tại c
a)CM tam giác abc là tam giác đều và tính diện tích abc theo R
b)lấy m thuộc cung nhỏ ab của đường tròn. vẽ tiếp tuyến m cắt ac và bc tại d và e. CM ad+be=de
c)CM GÓC dce=doe
cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O bán kính R . Kẻ đường cao AD (D thuộc BC) và đường kính AK . Hạ BE và CF cùng vuông góc với AK ( E thuộc AK , F thuộc AK ).
1) chứng minh tứ giác ABDE nội tiếp.
2) Chứng minh DF song song với BK
3) cho góc ABC = 60 độ , R=4cm. Tính diện tích hình quạt giới hạn bởi OC , OK và cung nhỏ CK .
4) cho BC cố định , A chuyển động trên cung lớn Bc sao cho tam giác ABC có ba góc nhọn . Chứng minh tâm đường tròn ngoại tiếp tam giác DEF là một điểm cố định.
Từ một điểm A ở ngoài đường tròn (O) vẽ hai tiếp tuyến AB và AC có B và C là hai tiếp điểm sao cho góc BOC = 1200 và cát tuyến AMN của đường tròn đó . Gọi I là trung điểm của dây MN.
a) Tính số đo cung nhỏ BC ?
b) Chứng minh tứ giác ABOC nội tiếp ?
c) Tính diện tích hình quạt tròn giới hạn bởi cung nhỏ AB theo R ?
d) Tính diện tích hình tròn ngoại tiếp tứ giác ABOC theo bán kính R khi AB=R ?
e) Chứng minh góc IOC = góc IAC ?