Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O;R). Gọi H là trực tâm của tam giác ABC. Gọi M là trung điểm của BC
a) Chứng minh AH = 2OM
Cho tam giác ABC nội tiếp (O;R).Gọi H là trực tâm của tam giác . Vẽ đường kính AD,gọi I là trung điểm của BC
a) CM:BHCD là hình bình hành
b)CM:H,I,D thẳng hàng
c):AH=2OI
cho tam giác ABC nhọn (AB<AC) nội tiếp đường tròn (O), đường cao AD và trực tâm H. Gọi I là trung điểm của BC, AO cắt BC tại R. Qua R kẻ đường thẳng song song với IH cắt AH tại K. Gọi J là trung điểm của AH. Chứng minh rằng K là trực tâm của tam giác JBC
Cho tam giác ABC nhọn nội tiếp đường tròn (O;R), đường kính AD, H là trực tâm tam giác ABC, M là trung điểm BC, G là trọng tâm tam giác ABC
a, CMR AB vuông góc với BD, tứ giác BHCD là hình bình hành
b, CNR H,G,O thẳng hàng
c, TÌm GTLN của AH+BC theo R
Câu 7. Cho tam giác ABC nhọn nội tiếp đường tròn (O;R). có trực tâm là H.
a. Chứng minh rằng: BAH = OAC
b. Gọi M là trung điểm của BC. Chứng minh rằng: AH=2OM
Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O;R). Gọi H là trực tâm của tam giác ABC. Gọi M là trung điểm của BC
c) Gọi N là giao điểm của AH với đường tròn (O) (N khác A). Gọi D là điểm bất kì trên cung nhỏ NC của đường tròn tâm (O) (D khác N và C). Gọi E là điểm đối xứng với D qua AC, K là giao điểm của AC và HE. Chứng minh rằng ACH = ADK.
Bài 1: Cho tam giác ABC nhọn nội tiếp (O;R). Các đường cao AD, BM, CN cắt nhau tại H. gọi K là trung điểm của AH.
a) Chứng minh: BNMC nội tiếp và là tâm đường tròn nội tiếp tam giác MNH.
b) Gọi L là điểm đối xứng của H qua BC. Chứng minh: AM.AC = AN.AB và điểm L thuộc dường tròn (O).
c) Gọi I là giao điểm của AH và AN. Chứng minh MB là tia phân giác góc NMD và IH.AD = AI.HD.
d) Chứng minh: I là trực tâm tam giác BKC.
giúp với!
Cho đường tròn ( I ), ( O ) nội tiếp , ngoại tiếp tam giác ABC . AI cắt ( O ) tại D .
a, Tam giác BDI là tam giác gì ?
b, Gọi M là trung điểm của BC . Kẻ AH vuông góc với BC . Gọi K là giao điểm của AH , MI . Chứng minh AK = r , r là bán kính của đường tròn tâm I .
Cho tam giác ABC nhọn, các đường cao AD, BE, CF đồng quy tại H. Gọi K là giao điểm của EF và Ah, M là trung điểm của AH; S đối xứng với H qua BC; R là giao điểm KC với MB
a) CMR MESB nội tiếp
b) KSCE nội tiếp
c) K là trực tâm tam giác MBC