a: Xét tứ giác BEDC co
góc BEC=góc BDC=90 độ
nên BEDC là tứ giác nội tiếp
=>góc BED+góc BCD=180 độ
=>góc AED=góc ACB
Xét ΔAED và ΔACB có
góc AED=góc ACB
góc EAD chung
Do đó: ΔAED đồng dạng với ΔACB
b: góc xAC=góc ABC
=>góc xAC=góc ADE
=>Ax//DE
a: Xét tứ giác BEDC co
góc BEC=góc BDC=90 độ
nên BEDC là tứ giác nội tiếp
=>góc BED+góc BCD=180 độ
=>góc AED=góc ACB
Xét ΔAED và ΔACB có
góc AED=góc ACB
góc EAD chung
Do đó: ΔAED đồng dạng với ΔACB
b: góc xAC=góc ABC
=>góc xAC=góc ADE
=>Ax//DE
cho tam giác ABC có 3 góc nhọn nội tiếp .đường tròn tâm <o>kẻ các đường cao BD,CE cắt nhau tại H
a/chứng minh BCDE và ADHE là tứ giác nội tiếp
b/chứng minhAD.AC=AE.AB
c/kẻ tiếp tuyến Ax của đường tròn ngoại tiếp tam giác ABC.chứng minh rằng Ax // ED
d/gọi F la điểm đối xứng với H qua BC .chứng minh rằng F nằm trên đường tròn tâm O
cho tam giác abc có 3 góc nhọn nội tiếp đường tròn tâm o các đường cao bd ce a cm ADE đồng Dạng ABC b kẻ tiếp tuyến Ax vs đường tròn (0) . Chứng minh rằng ax//de
1. Cho đường tròn (O), đường kính AB, dây AM. Kéo dài AM một đoạn MC = AM
a) Chứng minh AB = BC
b) Gọi N là trung điểm BC. Chứng minh tứ giác BOMN là hình thoi.
2. Cho đường tròn (O), đường kính AB, tiếp tuyến Ax. Trên Ax lấy điểm M, vẽ tiếp tuyến
MC với đường tròn (C là tiếp điểm).
a) Chứng minh OM // BC
b) Từ O vẽ đường thẳng vuông góc AB cắt BC tại N. Chứng minh BOMN là hình bình hành
c) Chứng minh COMN là hình thang cân
3.Cho đường tròn (O), đường kính AB, tiếp tuyến Ax. Trên Ax lấy điểm M, vẽ tiếp tuyến
MC với đường tròn (C là tiếp điểm).Kẻ CH vuông góc với AB tại H
a) Chứng minh CA là phân giác góc HCM
b) Kẻ CH vuông góc Ax tại K, gọi I là giao điểm của AC và HK. Chứng minh tam giác AIO vuông
c) Chứng minh 3 điểm M, I, O thẳng hàng
1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC
2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn đường kính MB
3.cho nửa đường tròn tâm O đường kính AB, C thuộc nửa đường tròn.vẽ CH vuông góc với AB(H thuộc AB),M là trung điểm CH,BM cắt tiếp tuyến Ax của O tại P .chứng minh PC là tiếp tuyến của (O)
4.cho đường tròn O đường kính AB, M là một điểm trên OB.đường thẳng qua M vuông góc với AB tại M cắt O tại C và D. AC cắt BD tại P,AD cắt BC tại Q,AB cắt PQ tai I chứng minh IC,ID là tiếp tuyến của (O)
5.cho tam giác ABC nội tiếp đường tròn đường kính BC (AB<AC).T là một điểm thuộc OC.đường thẳng qua T vuông góc với BC cắt AC tại H và cắt tiếp tuyến tại A của O tại P.BH cắt (O) tại D. chứng minh PD là tiếp tuyến của O
6.cho tam giác ABC nội tiếp đường tròn O. phân giác góc BAC cắt BC tại D và cắt (O) tại M chứng minh BM là tiếp tuyến của đường tròn ngoại tiếp tam giác ABD
1. Cho đường tròn (O), đường kính AB, dây AM. Kéo dài AM một đoạn MC = AM
a) Chứng minh AB = BC
b) Gọi N là trung điểm BC. Chứng minh tứ giác BOMN là hình thoi.
2. Cho đường tròn (O), đường kính AB, tiếp tuyến Ax. Trên Ax lấy điểm M, vẽ tiếp tuyến
MC với đường tròn (C là tiếp điểm).
a) Chứng minh OM // BC
b) Từ O vẽ đường thẳng vuông góc AB cắt BC tại N. Chứng minh BOMN là hình bình hành
c) Chứng minh COMN là hình thang cân
3.Cho đường tròn (O), đường kính AB, tiếp tuyến Ax. Trên Ax lấy điểm M, vẽ tiếp tuyến
MC với đường tròn (C là tiếp điểm).Kẻ CH vuông góc với AB tại H
a) Chứng minh CA là phân giác góc HCM
b) Kẻ CH vuông góc Ax tại K, gọi I là giao điểm của AC và HK. Chứng minh tam giác AIO vuông
c) Chứng minh 3 điểm M, I, O thẳng hàng
Mọi người ơi giúp e vsssssssssssssss.........E hỏi mà hong ai chỉ T.T
Cho tam giác ABC .Nội tiếp đường trong tâm O các đường cao BD,CE cắt nhau tại H . Cm tứ giác AEHD , BEDC nôi tiếp
Kẻ tiếp tuyến Ax đường tròn tâm O chứng mình : Ax // DE
Kẻ Đường kính BK của đường tròn O hạ CP vuông góc BK . Chứng minh CP= DE
Cho tam giác ABC có 3 góc nhọn và AB < AC nội tiếp đường tròn (O).Kẻ đường cao AD và đường kính AA'.Gọi E,F là chân đường vuông góc kẻ từ B và C xuống đường kính AA'.
a,Chứng minh AEDB nội tiếp
b,Chứng minh DB.AA'=AD.A'C
c,Chứng minh DE vuông góc với AC
Cho đường tròn (O; R). Từ điểm A nằm ngoài đường tròn kẻ các tiếp tuyến AB, AC với đường tròn (B,C là các tiếp điểm). Gọi H là trung điểm của BC
a, Chứng minh ba điểm A, H, O thẳng hàng và các điếm A, B, C, O cùng thuộc một đường tròn
b, Kẻ đường kính BD của (O). Vẽ CK vuông góc vói BD. Chứng minh AC.CD = CK.AO
c, Tia AO cắt đường tròn (O) tại M (M nằm giữa A và O). Chứng minh M là tâm đường tròn nội tiếp tam giác ABC
d, Gọi I là giao điểm của AD và CK. Chứng minh rằng I là trung điểm của CK
Cho tam giác abc có các góc nhọn nội tiếp đường tròn (o). Hai đường cao Bd và CE cắt nhau tại H. a) Chứng minh: Các tứ giác ADHE, BEDC nội tiếp. b) Chứng minh: Góc EAH = Góc ECB c) Từ A kẻ tiếp tuyến xy với đường tròn. Chứng minh: xy//DE