Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
pé

. Cho tam giác ABC nhọn(AB < AC) các đường cao BE và CF cắt nhau tại H. a) Chứng minh AH vuông góc với BC b) Từ B kẻ đường thẳng song song với CF, từ C kẻ đường thẳng song song với BE hai đường thẳng này cắt nhau tại K. Gọi M là trung điểm của Bc. Chứng Minh H, M, K thẳng hàng c) Gọi O là trung điểm của AK. Chứng minh OM vuông góc với BC

Nguyễn Lê Phước Thịnh
9 tháng 7 2021 lúc 12:55

a) Xét ΔABC có 

BE là đường cao ứng với cạnh AC(gt)

CF là đường cao ứng với cạnh AB(gt)

BE cắt CF tại H(gt)

Do đó: H là trực tâm của ΔABC(Tính chất ba đường cao của tam giác)

Suy ra: AH⊥BC

b) Xét tứ giác BHCK có 

HC//BK(gt)

BH//CK(gt)

Do đó: BHCK là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Suy ra: Hai đường chéo HK và BC cắt nhau tại trung điểm của mỗi đường(Định lí hình bình hành)

mà M là trung điểm của BC(gt)

nên M là trung điểm của HK

hay H,M,K thẳng hàng(đpcm)


Các câu hỏi tương tự
secret1234567
Xem chi tiết
Mai Hồng Ngọc
Xem chi tiết
thanh tú
Xem chi tiết
Hồ Công Nguyên
Xem chi tiết
hiểu minh hoàng
Xem chi tiết
Hồ Công Nguyên
Xem chi tiết
HOÀNG ĐỨC VIỆT
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Hoàng Anh Quý
Xem chi tiết