Xét tam giác ABC và tam giác DEC có :
AC = CD ( gt )
BC = CE ( gt )
\(\widehat{ACB}=\widehat{DCE}\) ( đối đỉnh )
=> \(\Delta ABC=\Delta DEC\left(c.g.c\right)\)
Xét tam giác ABC và tam giác DEC có :
AC = CD ( gt )
BC = CE ( gt )
\(\widehat{ACB}=\widehat{DCE}\) ( đối đỉnh )
=> \(\Delta ABC=\Delta DEC\left(c.g.c\right)\)
Bài 2: Cho tam giác ABC trên tia đối của tia CA lấy điểm D sao cho CD = CA, trên tia đối của tia CB lấy điểm E sao cho CE=CB
a) Chứng minh: tam giác ABC= tam giác DEC
b) Chứng minh: AB //DE
c) Trên cạnh AB lấy điểm M , trên cạnh DE lấy điểm N sao cho AM=DN. Chứng minh:tam giác AMC= tam giác DNC
d) Chứng minh: Ba điểm M, C, N thẳng hàng
cho tam giác ABC vuông tại A. trên tia đối của tia CA lấy điểm D sao cho CA=CD, trên tia đối tia CB lấy điểm E sao cho CB=CE.
1) Chứng minh tam giác ABC = tam giác DEC,
2) chứng minh AB//DE và ED vuông góc với CD,
3) Chứng minh AE = BD,
4) Gọi M là trung điểm của bd, N là trung điểm của AEchứng minh : 3 điểm M,C,N thẳng hàng
Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC tại H, trên tia đối của tia HA lấy điêm D sao cho HD= HA. Trên tia đối của tia CB lấy điểm E sao cho CE=CB. a) Chứng minh: Tam giác ACD cân b) Chứng minh: Tam giác ACE=Tam giác DCE c) Đường thẳng AC cắt DE tại K. Chứng minh: AB+BC> 2DK Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC tại H, trên tia đối của tia HA lấy điêm D sao cho HD= HA. Trên tia đối của tia CB lấy điểm E sao cho CE=CB.
a) Chứng minh: Tam giác ACD cân
b) Chứng minh: Tam giác ACE=Tam giác DCE
c) Đường thẳng AC cắt DE tại K. Chứng minh: AB+BC> 2DK
Cho Tam giác ABC vuông tại A . Trên tia đối của tia CA lấy điểm E sao cho AC = CE,trên tia đối của tia CB lấy điểm F sao cho BC = CF
a) Chứng minh Tam giác ABC = Tam giác EFC
b) Chứng minh AC vuông góc với EF
c) Chứng minh AF = BE , AF song song BE
cho tam giác ABC. trên tia đối tia CA lấy điểm D sao cho CA = CD,trên tia đối tia CB lấy điểm E sao cho CB = CE
1) chứng minh tam giác ABC = tam giác DEC
2) gọi M là điểm nằm giữa A và B, tia MC cắt DE tại N. Chứng minh MB = NE
Cho tam giác ABC nhọn. Trên tia đối của tia AB lấy điểm D sao cho AD=AC. Trên tia đối của tia AC lấy điểm E sao cho AE=AB. Chứng minh:
a) tam giác ABC=tam giác AED
b) BD=CE
Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC tại H, trên tia đối của tia HA lấy điểm D sao cho HD=HA. Trên tia đối của tia CB lấy điểm E sao cho CE=CB. a) Chứng minh: AC=DC. b) Chứng minh: Tam giác ACE=Tam giác DCE. c) Đường thẳng AC cắt DE tại K. Chứng minh: AB+BC>2DK
cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D sao cho AB = BD. Trên tia đối của tia CB lấy điểm E sao cho AC = CE. Chứng minh DE = AB+AC+BC
cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D sao cho AB = BD. Trên tia đối của tia CB lấy điểm E sao cho AC = CE. Chứng minh DE = AB+AC+BC