Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ngọc Bị Bủh

Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC tại H, trên tia đối của tia HA lấy điểm D sao cho HD=HA. Trên tia đối của tia CB lấy điểm E sao cho CE=CB. a) Chứng minh: AC=DC. b) Chứng minh: Tam giác ACE=Tam giác DCE. c) Đường thẳng AC cắt DE tại K. Chứng minh: AB+BC>2DK

Nguyễn Lê Phước Thịnh
13 tháng 4 2021 lúc 22:42

a)

Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC(ΔABC cân tại A)

AH chung

Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)

Suy ra: BH=CH(hai cạnh tương ứng)

Xét ΔABH vuông tại H và ΔDCH vuông tại D có 

AH=DH(gt)

BH=CH(cmt)

Do đó: ΔABH=ΔDCH(hai cạnh góc vuông)

Suy ra: AB=DC(Hai cạnh tương ứng)

mà AB=AC(ΔABC cân tại A)

nên AC=DC(đpcm)

Nguyễn Lê Phước Thịnh
13 tháng 4 2021 lúc 22:43

b) Xét ΔAHE vuông tại H và ΔDHE vuông tại H có 

EH chung

AH=DH(gt)

Do đó: ΔAHE=ΔDHE(hai cạnh góc vuông)

Suy ra: AE=DE(Hai cạnh tương ứng)

Xét ΔACE và ΔDCE có 

CA=CD(cmt)

CE chung

AE=DE(cmt)

Do đó: ΔACE=ΔDCE(c-c-c)

HT2k02
14 tháng 4 2021 lúc 1:32

undefined


Các câu hỏi tương tự
Nguyễn Tuấn Minh
Xem chi tiết
Nguyễn Lê Hoàng
Xem chi tiết
Phạm Thị Thu Liên
Xem chi tiết
Tri Nguyenthong
Xem chi tiết
Lê Thị Huyền Trang
Xem chi tiết
Nguyễn Phương Thảo
Xem chi tiết
Vu Duc Manh
Xem chi tiết
trương ngọc ánh
Xem chi tiết
Hà Minh Huyền
Xem chi tiết