a: góc ACK=1/2*180=90 độ
Xét ΔAHB vuông tại H và ΔACK vuông tại C có
góc ABH=góc AKC
=>ΔAHB đồng dạng với ΔACK
=>AH/AC=AB/AK
=>AH*AK=AB*AC
b: I thuộc trung điểm của OK là sao bạn?
a: góc ACK=1/2*180=90 độ
Xét ΔAHB vuông tại H và ΔACK vuông tại C có
góc ABH=góc AKC
=>ΔAHB đồng dạng với ΔACK
=>AH/AC=AB/AK
=>AH*AK=AB*AC
b: I thuộc trung điểm của OK là sao bạn?
Cho tam giác ABC (AB < AC) có 3 góc nhọn nội tiếp trong đường tròn (O; R). Vẽ đường cao AH của tam giác ABC, đường kính AD của đường tròn. Gọi E, F lần lượt là chân đường vuông góc kẻ từ C và B xuống đường thẳng AD. M là trung điểm của BC.
Tìm khẳng định sai ?
A. Tứ giác ABHF nội tiếp
B. Tứ giác BMFO nội tiếp.
C. H E / / B D
D. Có ít nhất một khẳng định sai
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O; R), hai đường cao BE và CF của tam giác cắt nhau tại H. Kẻ đường kính AK của đường tròn (O; R), gọi I là trung điểm của BC.
a) Chứng minh AH = 2.IO.
b) Biết góc BAC = 60o, tính độ dài dây BC theo R.
Cho đường tròn ( I ), ( O ) nội tiếp , ngoại tiếp tam giác ABC . AI cắt ( O ) tại D .
a, Tam giác BDI là tam giác gì ?
b, Gọi M là trung điểm của BC . Kẻ AH vuông góc với BC . Gọi K là giao điểm của AH , MI . Chứng minh AK = r , r là bán kính của đường tròn tâm I .
Cho tam giác ABC nhọn (AB<AC) nội tiếp (O), đường kính AK và đường cao AI. Gọi F là chân đường vuông góc kẻ từ C xuống đường kính AK, S là giao điểm của AB và CF, CF cắt BK và (O) lần lượt tại L và D
a/ Chứng minh: Tứ giác ABLF và AIFC nội tiếp
b/ Chứng minh: KL.KB = KC^2
c/ Chứng minh: LD/DS = LF/FC
d/ Gọi E là chân đường vuông góc kẻ từ B đến đường kính AK, M là trung điểm BC. Chứng minh: MI = ME
Giúp mình với, mình cần gấp lắm :)
cho tam giác abc nhọn nội tiếp đường tròn tâm o có ah là đường cao từ h kẻ hình chiếu HE và HF lên AB AC
cm tứ giác AEHF nội tiếp
AE*AB=AF*AC
kẻ AK là đường kính cắt EF tại I cm Ak vuông EF
cho AH=\(r\sqrt{2}\) cm EOF thẳng hàng
Cho tam giác ABC nội tiếp đường tròn (O). Kẻ đường cao AH. I,K lần lượt là chân đường vuông góc hạ từ A xuống tiếp tuyến tại B và C của (O). Gọi M, N là trung điểm của AI, AK.
Tìm điều kiện của tam giác ABC để AH = AM + AN.
Bài 1: Cho ∆ABC có 3 góc nhọn nội tiếp (O;R) các đường cao BE,CF cắt nhau tại H .
a/ Chứng minh: AH vuông góc BC .
b/ AH cắt BC tại D. Kẻ đường kính AK của (O). Chứng mimh: AB.AC = 2R. AD
c/ AK cắt BC tại M. Chứng minh: MB. MC = MA. MK
d/ Gọi I là trung điểm BC. Chứng minh: H, I, K thẳng hàng
1.Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn(O;R),hai đường cao BE va CF của tam giaic cắt nhau tai H. Kẻ đường kính AK của đường tròn(O;R),gọi là trung điểm của BC.
a,Chứng minh AH=2.I
b, Biết góc BAC=60 độ ,tính độ dài dây BC theo R
2,Cho tam giác ABC(góc A=90 độ),BC=a. Gọi bán kính của đường tròn nội tiếp tam giác ABC là r. Chứng minh rằng : \(\frac{r}{a}\le\frac{\sqrt{2}-1}{2}\)
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O;R). Tiếp tuyến tại A của (O;R) cắt đường thẳng BC tại điểm M. Gọi H là chân đường cao hạ từ A xuống BC
a) chứng minh AB.AC = 2R.AH
b) Chứng minh \(\frac{MB}{MC}=\left(\frac{AB}{AC}\right)^2\)
c) Trên cạnh BC lấy điểm N tùy ý( N khác B và C ). Gọi E,F lần lượt là hình chiếu vuông góc của N lên AB,AC. Tìm vị trí của N để độ dài đoạn EF nhỏ nhất
Cho tam giác ABC có 3 góc nhọn (AB<AC) nội tiếp đường tròn tâm O. Kẻ đường cao AH của tam giác và đường kính AD của đường tròn (O). Gọi E,F lần lượt là chân đường vuông góc kẻ từ C và B xuống đường thẳng AD. Gọi M là trung điểm ÁD
a) Chứng minh tứ giác BMFO nội tiếp
b) chứng minh HE//BD
c) Chứng minh \(S=\frac{AB.AC.BC}{4R}\) ( Với S là diện tích tam giác ABC, R là bán kính đường tròn (O) )