a) sử dụng tính chất tổng 2 góc đối = 180
hoặc 2 góc cùng nhìn 1 cạnh
b) sử dụng góc nội tiếp bằng nhau ở vị trí so le hoặc đồng vị
a) sử dụng tính chất tổng 2 góc đối = 180
hoặc 2 góc cùng nhìn 1 cạnh
b) sử dụng góc nội tiếp bằng nhau ở vị trí so le hoặc đồng vị
Cho ∆ABC nhọn (AB<AC) nội tiếp đường tròn (O), các đường cao AD, BE và CF cắt nhau tại H.
a) Chứng minh tứ giác AEHF và BCEF nội tiếp
b) Hai đường thẳng EF và BC cắt nhau tại M. Chứng minh MB.MC=ME.MF
c) AM cắt đường tròn (O) tại N. Đường thẳng qua B và song song với AC cắt AM tại I và cắt AH tại K. Chứng minh AN ⊥ HN và HI=HK.
cho tam giác ABC nhọn nội tiếp đường tròn (O;R).Các đường cao AD,BE,CF của tam giác cắt nhau tại H
a) chứng minh tứ giác BCEF nội tiếp
b)gọi i là điểm đối xứng của A gua O và M là hình chiếu của O trên BC.CM tứ giác BHCI là hình bình hành và AH = 2MO
c)Gọi N là trung điểm của EF.CM R.AN=AM.OM
ai giúp mình chứng minh phần c) với
Cho tam giác nhọn ABC nội tiếp đường tròn (O;R).Đường cao BE và CF của tam giác ABC lần lượt cắt đường tròn tại M và N. CM rằng:
a)Tứ giác BCEF nội tiếp đường tròn
B)Mn//EF
C)OA vuông góc EF
Cho tam giác ABC nhọn ( AB < AC ) nội tiếp đường tròn (O;R) hai đường cao BE và CF của tam giác ABC cắt nhau tại H và cắt đường tròn (O) lần lượt tại y và x kẻ đường kính AK của (O;R) . Đường thẳng HK cắt (O;R)
tại P
a, c/m tứ giác AEHF nội tiếp
b, c/m PB . PE=PC.PE
cho tam giác ABC nhọn nội tiếp đường tròn O. Vẽ 2 đường cao BE và CF cắt nhau tại H.
a. Chúng minh tứ giác AEHF nội tiếp
b. chứng minh BCEF nội tiếp
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn(O).
Các đường cao AD, BE, CF cắt nhau tại H và cắt đường tròn (O) lần lượt tại M, N, P. CMR:
a/. Các tứ giác AEHF, BCEF nội tiếp
b/ AD.BC = BE AC
c/. CMR BHM cân
Cho tam giác ABC nhọn (AB<AC) nội tiếp đường tròn (O), các đường cao BE, CF cắt nhau tại H
a) chứng minh tứ giác AEHF, BCEF nội tiếp
b) Đường thẳng EF và BC cắt nhau tại I, vẽ tiếp tuyến ID của đường tròn O. Chứng minh ID^2=IB*IC
c) DE, DF cắt đường tròn O tại M, N. Chứng minh MN//EF
Cho tam giác ABC có ba góc nhọn (AB < AC) nội tiếp đường tròn (O;R). Vẽ đường cao BE và CF cắt nhau tại H.
a) Chứng minh: Tứ giác AEHF nội tiếp đường tròn.
b) Chứng minh: AB . CE = CH . BE c) Chứng minh: OA ⊥ EF
Cho tam giác ABC nhọn nội tiếp (O; R). Gọi H là giao điểm của ba đường cao AD, BE, CF của tam giác ABC.
a) Chứng minh: Tứ giác BCEF và tứ giác AEHF nooin tiếp
b) Gọi M< N lần lượt là giao điểm của BE và CF với (O). Chứng minh: OA vuông góc với MN và AH . AD + BH . BE = AB2
c) Tia phân giác của goác BAC cắt (O) tại K và cắt BC tại I. Gọi J là tâm đường tròn ngoại tiếp tam giác AIC. Chúng minh: KO và CJ cắt nhau tại một điểm trên (O)
mọi người cho mình xin câu c thôi ạ