Xét \(\Delta AEC\) và \(\Delta ADB\):
\(\widehat{A}:chung\)
\(\widehat{AEC}=\widehat{ADB}(=90^\circ)\)
\(\to\Delta AEC\backsim \Delta ADB(g-g)\)
Xét \(\Delta AEC\) và \(\Delta ADB\):
\(\widehat{A}:chung\)
\(\widehat{AEC}=\widehat{ADB}(=90^\circ)\)
\(\to\Delta AEC\backsim \Delta ADB(g-g)\)
Cho △ABC nhọn có H là trực tâm. Gọi D và E lần lượt là giao điểm của BH với AC, CH với AB. Chứng minh rằng :
1)△AEC và △ADB là hai tam giác đồng dạng.
2) ∠ACB=∠AED
Cho △ABC nhọn có H là trực tâm. Gọi D và E lần lượt là giao điểm của BH với AC, CH với AB. Chứng minh rằng :
1)△AEC và △ADB là hai tam giác đồng dạng.
2) ∠ACB=∠AED
Cho tam giác ABC có H,G,O lần lượt là trực tâm, trọng tâm, giao điểm 3 đường của tam giác . Gọi E,D theo thứ tự là trung điểm của AB , AC.
CHỨNG MINH:
a, tam giác OED đồng dạng tam giác HCB
b, tam giác GOD đồng dạng tam giác GHB
Bài 4. Cho tam giác ABC với trực tâm H, trọng tâm G, tâm đường tròn ngoại tiếp O. Gọi M, N lần lượt là trung điểm của BC, AC. Chứng minh rằng tam giác MON đồng dạng AHB. Từ đó chứng minh H, G, O thẳng hàng.
Bài 5. Cho tam giác ABC. Dựng ra ngoài các tam giác ABF và ACE lần lượt vuông tại B, C và đồng dạng với nhau. BE giao CF tại K. Chứng minh rằng AK ⊥ BC.
Bài 6. Cho tứ giác ABCD có hai đường chéo cắt nhau tại I thỏa mãn tam giác AID đòng dạng tam giác BIC. Kẻ IH ⊥ AD, IK ⊥ BC. M, N lần lượt là trung điểm AB, CD. Chứng minh rằng MN ⊥ HK.
Bài 7. Cho tứ giác ABCD có hai đường chéo cắt nhau tại O. Gọi M, N lần lượt là trung điểm AB, CD; H, K lần lượt là trực tâm các tam giác AOD, BOC. Chứng minh rằng MN ⊥ HK.
Bài 8. Cho tam giác ABC. Các đường cao AD, BE, CF . M thuộc tia DF , N thuộc tia DE sao cho ∠M AN = ∠BAC. Chứng minh rằng A là tâm đường tròn bàng tiếp góc D của tam giác DMN .
Bài 9. Cho tứ giác ABCD có hai đường chéo AC = BD. Về phía ngoài tứ giác dựng các tam giác cân đồng dạng AMB và CND (cân tại M, N ). Gọi P, Q lần lượt là trung điểm của AD, BC. Chứng minh rằng M N vuông góc với PQ.
Bài 10. Cho tam giác ABC. Các đường cao AD, BE, CF . Trên AB, AC lấy các điểm K, L sao cho ∠FDK = ∠EDL = 90◦. Gọi M là trung điểm KL. Chứng minh rằng AM ⊥ EF .
Mong các bạn giúp đỡ mình. Giúp được bài nào thì giúp nhé.
Cho tam giác ABC nhọn, đường cao AD và đường cao BE cắt nhau tại H. Gọi G, O lần lượt là trọng tâm và giao của các đường trung trực trong tam giác ABC. Gọi trung điểm của BC và AC lần lượt là M và N. Chứng minh: a) tam giác OMN đồng dạng với tam giác HAB. b) tam giác GOM đồng dạng với tam giác GHA. c) ba điểm H, G, O thẳng hàng và GH = 2OG
Cho tam giác nhọn ABC. Gọi M, N theo thứ tự là trung điểm của BC, AC. Gọi O là giao điểm các đường trung trực, H là trực tâm, G là trọng tâm của tam giác ABC
a. Chứng minh: tam giác OMN đồng dạng với tam giác HAB
b. So sánh độ dài AH và OM
c. Chứng minh: tam giác HAG đồng dạng với tam giác OMG
d. Chứng minh: H, O, G thẳng hàng và GH= 2*OG
Cho tam giác nhọn ABC 2 đường cao BD, CE. CMR:
a, Tam giác ADB đồng dạng với tam giác AEC
b, Tam giác AED đồng dạng với tam giác ACB
c, Tam giác DHC đồng dạng với tam giác EHB (H là trực tâm của tam giác)
d, BH . BD + CH . CE = BC^2
Cho tam giác ABC nhọn có ba đường cao AD, BE, CF với D thuộc BC, E thuộc AC, F thuộc AB, Gọi H là trực tâm của tam giác ABC. Chững minh rằng tam giác ABD đồng dạng với tam giác CHD