Cho tam giác ABC nhọn có đường cao BD và CE. Gọi H, K là hinh\f chiếu của B,C trên đường thẳng DE.
a) C/M: EH = DK
b) C/M : S BEC + S BDC = S BHCK
cho tam giác ABC có 3 góc nhọn nội tiếp trong đường tròn (O,R). Vẽ đường cao AH của tam giác ABC, đường kính AD của đường tròn. Gọi E,F lần lượt là chân đường vuông góc kẻ từ C vàB xuống đường thẳng AD, M là trung điểm BC.
a)Chứng minh các điểm A,B,H,F cùng thuộc 1 đường tròn. B,M,F,O cùng thuộc 1 đường tròn.
b)chứng minh HE//BD.
c)khi OM=R/2, hãy tính S hình quạt tròn đc giới hạn bởi OB,OC và cung nhỏ BC.
d)cho BC cố định và A chạy trên cung lớn BC, đặt AB=c, BC=a, AC=b. Tím vị trí của A để tích a.b.c đạt giá trị max
Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC nhọn có H(2;2;1), K - 8 3 ; 4 3 ; 8 3 , O lần lượt là hình chiếu vuông góc của A, B, C trên các cạnh BC, AC, AB. Gọi I là trực tâm tam giác ABC . Phương trình mặt cầu (S) tâm A, đi qua điểm I là
A. S : x + 4 2 + y + 1 2 + z - 1 2 = 20
B. S : x - 2 2 + y 2 + z - 1 2 = 5
C. S : x 2 + y - 1 2 + z - 1 2 = 20
D. S : x + 2 2 + y 2 + z - 1 2 = 5
Cho tam giác ABC vuông tại B và nằm trong mặt phẳng (P) có AB=2a, B C = 2 3 a . Một điểm S thay đổi trên đường thẳng vuông góc với (P) tại A S ≠ A . Gọi H, K lần lượt là hình chiếu vuông góc của A lên SB, SC. Biết rằng khi S thay đổi thì bốn điểm A, B, H, K thuộc mặt cầu cố định. Tính bán kính R của mặt cầu đó.
Cho tam giác ABC vuông tại B và nằm trong mặt phẳng (P) có A B = 2 a , B C = 2 3 a . Một điểm S thay đổi trên đường thẳng vuông góc với (P) tại A S ≠ A . Gọi H, K lần lượt là hình chiếu vuông góc của A lên SB, SC. Biết rằng khi S thay đổi thì bốn điểm A, B, H, K thuộc mặt cầu cố định. Tính bán kính R của mặt cầu đó.
A. R = 2 a
B. R = 3 a
C. R = 2 a
D. R = a
Trong không gian Oxyz, cho tam giác nhọn ABC có H(2;2;1), K − 8 3 ; 4 3 ; 8 3 , O lần lượt là hình chiếu vuông góc của A, B, C trên các cạnh BC, AC, AB. Đường thẳng d qua A và vuông góc với mặt phẳng (ABC) có phương trình là
A. d : x 1 = y − 6 − 2 = z − 6 2
B. d : x − 8 3 1 = y − 2 3 − 2 = z + 2 3 2
C. d : x + 4 9 1 = y − 17 9 − 2 = z − 19 9 2
D. d : x + 4 1 = y + 1 − 2 = z − 1 2
Cho hình trụ có trục O O ' , bán kính đáy r và chiều cao h = 3 r 2 . Hai điểm M, N di động trên đường tròn đáy (O) sao cho OMN là tam giác đều. Gọi H là hìn chiếu vuông góc của O trên mặt phẳng ( O ' M N ). Khi M, N di động trên đường tròn (O) thì đoạn thẳng OH tạo thành mặt xung quanh của một hình nón, tính diện tích S của mặt này.
A. S = 9 3 π r 2 32
B. S = 9 3 π r 2 16
C. S = 9 π r 2 32
D. S = 9 π r 2 16
Cho hình chóp S ABC . có tam giác SAB vuông cân tại S; tam giác ABC vuông cân tại C và ∠ B S C = 60 ° . Gọi M là trung điểm cạnh SB. Côsin góc giữa hai đường thẳng AB và CM bằng
A. 6 6
B. 30 6
C. 6 3
D. 3 3
Cho tam giác ABC có góc A =90 độ và AB=AC. Gọi K là trung điểm của BC
a) C/m: tam giác AKB= tam giác AKC và AK vuông góc BC
b) Từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E. C/m: EC song song AK
c)Tam giác BCE là tam giác gì? Tính góc BEC