a. -Vì AH⊥BC tại H (gt).
Nên AH là đường vuông góc, AB, AC là các đường xiên.
\(\Rightarrow AH< AB;AH< AC\) (quan hệ giữa đường vuông góc và đường xiên).
\(\Rightarrow AH+AH< AB+AC\)
\(\Rightarrow2AH< AB+AC\)
\(\Rightarrow AH< \dfrac{AB+AC}{2}\)
b. -Có: AH⊥BC tại H (gt).
Nên BH, CH lần lượt là hình chiếu của đường xiên AB,AC lên BC.
Mà \(AB< AC\) (gt)
\(\Rightarrow BH< CH\) (quan hệ giữa đường xiên và hình chiếu).
-Có: MH⊥BC tại H (gt).
Nên BH, CH lần lượt là hình chiếu của đường xiên MB,MC lên BC.
Mà \(BH< CH\left(cmt\right)\)
\(\Rightarrow MB< MC\)(quan hệ giữa đường xiên và hình chiếu).
a. xét tam giác vuông AHB và tam giác vuông AHC
\(AB>AH\) ( BĐT tam giác )
\(AC>AH\) ( BĐT tam giác )
\(\Rightarrow AB+AC>2.AH\) hay \(AH< \dfrac{AB+AC}{2}\)
b.xét tam giác ABM và tam giác ACM, có:
AB = AC ( ABC cân )
góc BAM = góc CAM ( ABC cân )
AM : cạnh chung
Vậy tam giác ABM = tam giác ACM ( c.g.c )
=> MB = MC ( 2 cạnh tương ứng )