Cho tam giác nhọn ABC (AB<AC), các đường cao AD,BE và CF cắt nhau tại H.
a) Chứng minh rằng: Tam giác ABC đồng dạng tam giác ACF và AB.AF = AC.AE
b) Chứng minh rằng: góc AED = góc ACB
c) Gọi M là trung điểm của BC, K là giao điểm của đường thẳng EF và đường thẳng BC. Chứng minh BC2 = 4.MD.MK
Cho tam giác ABC nhọn (AB<AC), ba đường cao AD,BE,CF cắt nhau tại H. Kéo dài EF và BC cắt ngay tại I. Gọi M là trung điểm BC. A. Chứng minh: IE.IF=IM^2-(BC^2/4)
B. Gọi N là trung điểm AH. Chứng minh MN vuông góc EF
cho tam giác ABC có ba góc nhọn (AB<AC), có 2 đường cao BE,CF cắt nhau tại H. a/ chứng minh tam giác ABE đồng dạng tam giác ACF. b/ chứng minh AB.AF=AC.AE c/ gọi O là trung điểm BC, I là trung điểm AH. Chứng minh OI vuông góc EF. d/ Gọi M là giao điểm của OI vè EF. cho biết BAC=60. Tính tỉ số AM/AO
Cho tam giác ABC nhọn có AB > AC. Các đường cao AD,BE, CF cắt tại H.
a) chứng minh rằng ∆AFH~∆ADB
b) ∆ AFE~∆ABC và EH là tia phân giác của góc FED
c) gọi I là trung điểm của BC qua H kẻ đường thẳng vuông góc với HI đường thẳng này cắt AB tại M, cắt AC tại N . Chứng minh ∆ IMN cân
Cho tam giác ABC có 3 góc nhọn. Ba đường cao AD, BE, CF cắt nhau tại H.
a) Chứng minh: tam giác AEB đồng dạng với tam giác AFC. Tính tỉ số đồng dạng với AB=4cm, AC=6cm.
b) Chứng minh: tam giác AEF đồng dạng với tam giác ABC.
c) Kéo dài EF và BC cắt nhau tại I. Gọi M là trung điểm của BC. Chứng minh: IE.IF=IM^2-BC^2/4.
d) Gọi N là trung điểm của AH. Chứng minh: MN vuông góc với EF.
cho tam giác ABC có 3 góc nhọn, các đường cao AD,BE,CF cắt nhau tại H. Gọi M là trung điểm BC. Đường thẳng vuông góc HM tại H lần lượt cắt AB và AC tại P và Q. Chứng minh: H là trung điểm PQ
Cho tam giác ABC nhọn ( AB < AC ) có ba đường cao AD , BE , CF cắt nhau tại H.
a ) Chứng minh : tam giac AEB đồng dạng tam giac AFC
b ) Chứng minh : AF.AB = AE.AC và tam giac AEF đồng dạng với tam giac ABC
c ) Gọi K là giao điểm của AH và EF . Chứng minh : KH.AD = AK.HD
Bài 3. Cho tam giác ABC, các đường cao AD, BE, CF, trực tâm H. Gọi O là giao điểm ba đường trung trực. Gọi I là trung điểm AH. Qua 1 kẻ đường thẳng vuông góc với OI, cắt AB,AC tại K, L. a) Gọi M là trung điểm của BC, chứng minh AH = 2OM b) Chung minh MH vuông góc KL . c) Chứng minh AHCM đồng dạng với AKAI, từ đó suy ra IK = IL Giúp mình càng nhanh càng tốt ạ mình cần trong 10 p nữa ạ
Bài 3. Cho tam giác ABC, các đường cao AD, BE, CF, trực tâm H. Gọi O là giao điểm ba đường trung trực. Gọi I là trung điểm AH. Qua 1 kẻ đường thẳng vuông góc với OI, cắt AB,AC tại K, L. a) Gọi M là trung điểm của BC, chứng minh AH = 2OM b) Chung minh MH vuông góc KL . c) Chứng minh AHCM đồng dạng với AKAI, từ đó suy ra IK = IL