a) Xét tam giác ABC có:
M là trung điểm AB
N là trung điểm AC
=> MN là đường tb
=> BC=2MN=2.7,5=15(cm)
b) Xét tam giác ABC có:
M là trung điểm AB
P là trung điểm BC
=> MP là đường tb
=> MP//AC và \(MP=\dfrac{1}{2}AC\)
Mà \(N\in AC,AN=\dfrac{1}{2}AC\)(N là trung điểm AC)
=> MP//AN và MP=AN
=> AMPN là hbh
c) Ta có: MN//BC(MN là đường tb)
Mà \(H,P\in BC\)
=> MN//HP
=> MHPN là hthang
Xét tam giác AHC vuông tại H có:
HN là trung tuyến ứng với cạnh huyền
\(\Rightarrow HN=\dfrac{1}{2}AC\)
Mà \(MP=\dfrac{1}{2}AC\left(cmt\right)\)
=> HN=MP
=> MHPN là hthang cân