cho tam giác ABC ngoại tiếp đường tròn tâm i gọi D ,E ,F lần lượt là các tiếp điểm của các cạnh BC CA AB với đường tròn tâm i .gọi m là giao điểm của AB và BC, AD cắt đường tròn tâm i tại n .gọi k là giao điểm của AC và EF .a)Chứng minh rằng IKND là tứ giác nội tiếp .b) chứng minh rằng MN là tiếp tuyến của đường tròn tâm I.
Cho tam giác ABC. Đường tròn nội tiếp tam giác tiếp xúc với các cạnh BC, CA, AB tại D, E, F. CMR: HD là tia phân giác của góc BHC
Ai đó làm ơn giúp với
Cho tam giác ABC có độ dài ba cạnh AB = c, AC = b, BA = a và p là nửa chu vi của tam giác. Đường tròn tâm I nội tiếp tam giác lần lượt tiếp xúc với BC, AC và AB tại D, E và F
a, Chứng minh (I) có bán kính r = (p – a)tan B A C ^ 2
b, Với B A C ^ = α, tìm số đo của góc EDF theo α
c, Gọi H, K lần lượt là hình chiếu của B,C trên EF. Chứng minh: ∆BHF:∆CKE
d, Kẻ DP vuông góc vói EF tại P. Chứng minh: ∆FPB:∆CEP và PD là tia phân giác của góc B P C ^
Một số bài toán hay về tâm nội tiếp:
Bài 1: Cho tam giác ABC nội tiếp (O), hai điểm K,L di chuyển trên (O) (K thuộc cung AB không chứa C, L thuộc cung AC không chứa B) thỏa mãn KL song song với BC. Gọi U và V lần lượt là tâm nội tiếp các tam giác AKB,ALC. Chứng minh rằng tâm của (UAV) thuộc đường thẳng cố định.
Bài 2: Cho tứ giác lồi ABCD có AD = BC. AC cắt BD tại I. Gọi S,T là tâm nội tiếp các tam giác AID,BIC. M,N là trung điểm các cạnh AB,CD. Chứng minh rằng MN chia đôi ST.
Bài 3: Cho tam giác ABC, đường tròn (I) nội tiếp tam giác ABC tiếp xúc BC,CA,AB tại D,E,F. Kẻ DH vuông góc EF tại H, G là trung điểm DH. Gọi K là trực tâm tam giác BIC. Chứng minh rằng GK chia đôi EF.
Bài 4: Cho tam giác ABC ngoại tiếp (I), (I) tiếp xúc với BC,CA,AB tại D,E,F. Gọi AI cắt DE,DF tại K,L; H là chân đường cao hạ từ A của tam giác ABC, M là trung điểm BC. Chứng minh rằng bốn điểm H,K,L,M cùng thuộc một đường tròn có tâm nằm trên (Euler) của tam giác ABC.
Cho đường tròn (I) nội tiếp tam giác ABC. Gọi D, E, F lần lượt là tiếp điểm của BC, CA, AB với (I). Đường thẳng qua A và song song với BC cắt EF tại K. Gọi M là trung điểm của BC. Chứng minh rằng MI vuông góc với DK.
Cho tam giác ABC, D, E, F thứ tự là tiếp điểm của đường tròn nội tiếp tam giác ABC(D thuộc BC, E thuộc AC, F thuộc AB). H là hình chiếu của D trên EF. C/m HD là phân giác của góc BHC.
Cho tam giác ABC nhọn ( AB<AC) nội tiếp đường tròn tâm O. Vẽ đường cao AH. Gọi D,E lần lượt là hình chiếu vuông góc của H lên AB,AC
a, chứng minh: OA vuông góc vs DE
b, DE cắt BC tại K. CM: KH^2=KB*KC
c, Đường thẳng KA cắt (O) tại F. Gọi I là tâm đường tròn ngoại tiếp tứ giác BCED. Chứng minh: F,H,I thẳng hàng
1) cho tam giác vuông ABC đường cao AH .gọi AD ;AE là phân giác các góc BAH và góc CAH .chứng minh rằng đường tròn nội tiếp tam giác BCA trùng với đường tròn ngoại tiếp tam giác ADE
2)cho tam giác ABC vuông tại A;gọi I là tâm đường tròn nội tiếp tam giác ABC ;các tiếp điểm trên BC;CA;AB lần lượt là D,E,F.gọi M là trung điểm của AC ,đường thẳng MI cắt các cạnh AB tại N ,đường thẳng DF cắt đường cao AH tại P .cmr tam giác APN cân
Gọi O, I lần lượt là tâm đuờng tròn ngoại tiếp và nội tiếp tam giác ABC. Đường tròn tâm I tiếp xúc với BC, CA, AB lần lượt tại D, E, F. DF cắt AC tại P, DE cắt AB tại Q. Gọi M, N lần lượt là trung điểm của PE, QF.
Chứng minh rằng:
a) NF2=NA.NB
b) OM vuông góc với MN
Đường tròn nội tiếp tam giác ABC tiếp xúc với các cạnh BC, AC, AB lần lượt tại M, N, P. Gọi K là hình chiếu của M lên NP.
Chứng minh: KM là tia phân giác góc BKC