xét 2 tam giác vuông BAM và BNM có:
góc ABM= góc NBM(GT)
BM là cạnh chung
\(\Rightarrow\)tam giác BAM=tam giác BNM:(cạnh huyền - góc nhọn)
a: Xet ΔBAM vuông tại A và ΔBNM vuông tại N co
BM chung
góc ABM=góc NBM
=>ΔBAM=ΔBNM
b: AM=MN
MN<MC
=>AM<MC
xét 2 tam giác vuông BAM và BNM có:
góc ABM= góc NBM(GT)
BM là cạnh chung
\(\Rightarrow\)tam giác BAM=tam giác BNM:(cạnh huyền - góc nhọn)
a: Xet ΔBAM vuông tại A và ΔBNM vuông tại N co
BM chung
góc ABM=góc NBM
=>ΔBAM=ΔBNM
b: AM=MN
MN<MC
=>AM<MC
cho tam giác ABC có góc A = 90 độ kẻ BM là tia phân giác của góc B(M thuộc AC) kẻ MH vuông góc BC ( H thuộc BC ) gọi N là giao điểm của điểm BA và HM. Chứng minh rằng a) AM = MH. b) so sánh AM và MC . c) MN = MC
Cho tam giác vuông tại A,có BM là tia phân giác của góc ABC(M thuộc AC).Kẻ MH vuông góc BC(H thuộc BC)
a)chứng minh tam giác AMB=tam giác HBM
b)chứng minh AM=HM
C)so sánh AM và MC
Bài 1: Cho tam giác ABC, AB=AC=5cm; bc= 6cm tia phân giác của góc A cắt BC tại M
a, Chứng minh rằng: tam giác AMB = tam giác AMC
b, Tính độ dài AM
c, Kẻ tia phân giác của góc MAC cắt MC tại D. So sánh độ dài MC và MD?
Cho tam giác ABC có AB = BC. Tia phân giác của góc BAC cắt cạnh BC tại M. Từ M kẻ MH vuông góc AB tại H ( H thuộc AB ) ; Từ M kẻ MK vuông góc với AC tại K ( K thuộc AC )
a) Chứng minh tam giác AMB = tam giác AMC
b) Chứng minh tam giác AHM = tam giác AKM từ đó so sánh hai đoạn thẳng AH và AK
c) Chứng minh HK vuông góc vs AM
Cho tam giác ABC cân tại C(C<90 độ ) . Kẻ AM vuông góc với BC tại M, BN vuông góc với AC tại N. Gọi giao điểm của AM và BN là K.
1) Chứng minh rằng tam giác CAM= tam giác CBN và CK là tia phân giác góc ACB.
2) Chứng minh MN//AB
3) Kéo dài CK cắt AB tại D. Biết AB = 10 cm , AC = 12 cm . Tính CD.
4) Chứng minh ND= 1/2 AB.
Cho tam giác vuông ABC ( AB >AC) phân giác của góc B cắt AC tại M. Trên cạnh BC lấy điểm D sao cho BD = BA.
a) Chứng minh tam giác ABM = tam giác DBM
b)Chứng minh MD vuông góc với BC
c)So sánh MC và AM
Bài 2: Cho tam giác ABC có góc A>90 độ , lấy điểm M thuộc cạnh AB .
a) So sánh AC và MC
b) Chứng minh tam giác MBC là tam giác tù
c) Chứng minh AC <MC <BC
Bài 3: Cho tam giác MNP có Góc N>90 độ , trên tia đối của tia NP lấy điểm Q .
a) So sánh MN và MP
b) Chứng minh tam giác MPQlà tam giác tù.
c) Chứng minh MN<MP<MQ
Bài 4: Cho tam giác ABC có AB=3 cm, AC=4 cm
a) So sánh góc B với gócC
b) Hạ AH vuông góc với BC tại H . So sánh góc BAH và góc CAH
Bài 5: Cho tam giác ABC có AB = 5 cm, AC = 3 cm
a) So sánh góc B với góc C
b) So sánh hai góc ngoài tại các đỉnh B và C của tam giác ABC
Bài 6: Cho tam giác ABC vuông tại A có AC=2AB . Lấy điểm E trên cạnh AC sao cho
AB=AE . Trên tia đối của tia EB lấy điểm D sao cho EB=ED
a) Chứng minh tam giác ABE= tam giác CDE
b) So sánh góc ABE và góc CBE
Cho tam giác ABC vuông tại A có AC = 12cm, BC = 13cm. Vẽ tia phân giác BM cửa góc ABC ( M thuộc AC). Từ M kẻ MD vuông góc với BC tại D
a) So sánh các góc của tam giác ABC b) Chứng minh tam giác ABM = tam giác DBM c) Đường thẳng DM cắt tia BA tại K, Chứng minh KD + AB > BCbài 4: cho tam giác ABC vuông tại A (AB<AC) tia phân giác của góc C cắt AC tại D .Kẻ DE vuông góc với BC tại E . gọi M là giao điểm củaAB và DE
a, chứng minh tam giác ABD = tam giác EBD, từ đó suy ra BA=BE
b, so sánh độ dài của các cạnh của tam giác ADM