a: AB=9cm<AC
nên góc ACB<góc ABC
b: XétΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
Do đo: ΔBAD=ΔBED
Suy ra: BA=BE=9cm
a: AB=9cm<AC
nên góc ACB<góc ABC
b: XétΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
Do đo: ΔBAD=ΔBED
Suy ra: BA=BE=9cm
Cho tam giác ABC vuông tại A , có AB = 9cm , AC = 12cm . Tia phân giác của góc A cắt BC tại D . Từ D kẻ DE vuông góc với AC ( E thuộc AC ) a, chứng minh Δ ABC đồng dạng ΔEDC b, tính độ dài các đoạn thẳng BC , BD , CD
Cho tam giác ABC (góc A=90). D thuộc BC sao cho BD=BA. Qua D kẻ đường thăng d vuông góc BC cắt tia đối của tia AB tại E. Chứng minh:
a)Tam giác BEC cân
b)ED cắt AC tại H. Chứng minh BH vuông góc EC
c)Tia Bx vuông góc BA, ED cắt Bx tại K
Chứng minh tam giác BHK cân.
Cho tam giác ABC vuông tại A có AB = 9cm, AC = 12cm. Tia phân giác góc A cắt BC tại D. Từ D kẻ DE vuông góc với AC (E thuộc AC).
a,Tính độ dài các đoạn thẳng BD, BC, CD.
b,Chứng minh tam giác ABC đồng dạng với tam giác EDC.
c,Tính DE
d,Tính tỉ số SABD/SADC
Vẽ hình, viết giả thiết kết luận và giải giúp mik với :<
cho tam giác ABC vuông tại A , có AB = 9cm , AC = 12cm . tia phân giác của góc A cắt BC tại D . từ d kẻ DE vuông góc với AC ( E thuộc AC)
a) tính độ dài của đoạn thẳng bc , bd , cd và de
b) tính diện tích của tam giác ABD và ACD
Cho tam giác ABC vuông tại A có AB =9cm AC=12cm tia phân giác góc A cắt BC tại D từ D kẻ DE vuông góc Ac E thuộc AC a, tính tỉ số BD phần DC độ dài BD và CD b,chứng minh tam giác ABC đồng dạng tam giác EDC
Cho tam giác vuông ABC có ( góc A =90 độ) có AB =9cm, AC=12cm . Tia phân giác của góc A cắt BC tại D. Từ D kẻ DE vuông góc với AB ( E thuộc AB)
Bài 2. Cho tam giác ABC vuông tại A, AB = 12cm, AC = 16cm. Tia phân giác góc A cắt BC tại D.
a) Tính độ dài các đoạn thẳng BD, CD.
b) Từ D kẻ DE vuông góc với AC (E thuộc AC). Tính DE, AD.
Bài 3. Cho hình bình hành ABCD có CD = 4cm. Kẻ AH vuông góc với DC (H thuộc DC). Biết AH = 3cm.
a) Tính diện tích hình bình hành ABCD.
b) Gọi M là trung điểm AB, DM cắt AC tại N. Chứng minh: DN = 2NM.
c) Tính diện tích tam giác AMN.
Cho tam giác ABC ( góc A = 90 độ ) có AB = 9 cm, AC = 12 cm. Tia phân giác góc A cắt BC tại D. Từ D kẻ DE vuông góc với AC ( E thuộc AC ).
a) Tính độ dài của BD, CD và DE
b) Tính diện tích tam giác ADB và BCD
cho tam giác ABC vuông tại A vẽ tia phân giác BD ( D thuộc AC) . Vẽ DE vuông góc với BC tại E. Chứng minh
a, tam giác ABC = tam giác EBD
b, AB =DE
c, BA cắt DE tại H , C/m rằng BD vuông góc HC
d, so sánh AD và BC
Bài 8: Cho tam giác ABC vuông tai A, có AB = 9cm, AC = 12cm. Tia phân giác góc A cắt BC tại D, từ D kẻ DE vuông góc AC ( E thuộc AC)
a)Tính tỉ số: BD/DC , độ dài BD và CD
b) Chứng minh: DABC đồng dạng DEDC
c)Tính DE d) Tính tỉ số Sabd/Sadc