Do DE song song BC
=> Theo định lý Talet, DA/DB = EA/EC
Mà DA/DB= EC/EA
=> EC=EA
=> E là trung điểm AC
=> DE là đường trung bình của tam giác ABC
=> D cũng là trung điểm AB
Do DE song song BC
=> Theo định lý Talet, DA/DB = EA/EC
Mà DA/DB= EC/EA
=> EC=EA
=> E là trung điểm AC
=> DE là đường trung bình của tam giác ABC
=> D cũng là trung điểm AB
Cho tam giác ABC, đường thẳng song song với BC cắt AB,AC lần lượt tại D và E. CMR: Nếu \(\frac{DA}{DB}=\frac{EC}{EA}\)thì D,E lần lượt là trung điểm của AB và AC
cho tam giác ABC kẻ đường thảng song song với BC sao cho cắt AB tại D và cắt AC tại e chứng minh rằng nếu BD/AD=EC/AE thì D,e lần lượt là trung điểm của AB và AC
cho tam giác abc vuông tại a (ab<ac).Vẽ đường cao ah, gọi m,n lần lượt là trung điểm ah, bh.
A) chứng minh tứ giác abnm là hình thang
B) gọi d là trung diểm của cạnh bc, từ d kẻ đg thẳng song song với ac, ab và lần lượt cắt ab tại e, cắt ac tại f. Chứng minh tứ giác aedf là hình chữ nhật
Cho tam giác ABC có AB < AC, đường phân giác AD, M là trung điểm của BC. Kẻ đường thẳng song song với AD cắt AB, AC lần lượt tại E, K Gọi O là giao điểm AM và DK
Chứng minh
a)AO.OK=OM.OD
b)Cho AB=5,AC=10,BC=12 Tính DB
c)AE=AK và AB/CE=BD/CM
d)BK=CE
Cho tam giác ABC cân tại A. Lấy D, E lần lượt là trung điểm của AB và AC. a) Chứng minh tứ giác BDEC là hình thang cần. b) Lấy I là trung điểm của BD. Qua I vẽ đường thẳng song song với AC cắt DE tại M, BC tại N. Chứng minh MN – EC. ©) Tứ giác BMDN là hình gi? Vì sao? d) . Tìm điều kiện của AABC đề tử giác BMDN là hình vuông?
Cho tam giác ABC ; D, E lần lượt là trung điểm của AB, AC. Từ E kẻ đường thẳng song song với AB cắt BC tại K. Chứng minh tứ giác DEKB là hình bình hành
Cho tam giác ABC cân tại ,A kẻ một đường thẳng song song với BC cắt các cạnh AB và AC lần lượt tại D và .E
a) Tứ giác BDEC là hình gì? Tại sao?
b) Gọi O là giao điểm của BE và .CD Chứng minh AO là trung trực của .BC
Cho tam giác ABC nhọn , đường thẳng song song với BC cắt các cạnh AB và AC theo thứ tự ở D và E
a) Tính độ dài AB biết AE/EC = 3/4 , DB = 8cm
b) AD/DB=EC/AE . C/m D,E theo thứ tự là trung điểm AB và AC
Cho tam giác ABC. Một đường thẳng song song với BC cắt các cạnh AB, AC tại D và E. Qua C kẻ đường thẳng song song với AB cắt DE tại F. Gọi H là giao điểm của AC với BF. Đường thẳng qua H song song với AB cắt BC tại I. Chứng minh rằng:
a. DA/DB = ED/FE
b. HA.HE = HC2