Cho tam giác ABC có đường trung tuyến AM. Vẽ hai đường caocủa tam giác BH và CK lần lượt là đường cao của tam giác ABM và ACM. Chứng minh rằng BH = CK.
Bài 1 :
Cho tam giác ABC có đường trung tuyến AM = ½ BC. Chứng minh rằng tam giác ABC vuông.
Bài 2 :
Cho tam giác ABC có AB = AC. Vẽ đường phân giác AI. Chứng minh rằng :
AI vuông góc BC.BI = CI và góc ABC = ACB.Bài 3 :
Cho tam giác ABC có đường trung tuyến AM. Vẽ hai đường cao của tam giác BH và CK lần lượt là đường cao của tam giác ABM và ACM. Chứng minh rằng BH = CK.
Bài 4 :
Cho tam giác ABC có đường trung tuyến CI. Trên tia đối CI lấy điểm D sao cho ID = IC.
Chứng minh AD = BC.Lấy E thuộc AD và F thuộc BC sao cho AE = BF. Chứng minh rằng I là trung điểm của EF.Cho tam giác ABC cân tại A. gọi M là trung điểm của BC. kẻ đường cao BP. Từ M, kẻ các đường thẳng MK và MH lần lượt vuông góc với AC và AB tại K và H
A) chứng minh Tam giác ABM= tam giác ACM
b) chứng minh BH= CK
c) Gọi I là giao điểm của BP và HM. Tam giác IBM là tam giác gì? vì sao?
Cho \(\Delta ABC\)( góc A\(\ne\) 90 độ) với đường trung tuyến AM và các đường cao BH,CK. Đường thẳng qua A vuông góc với AM cắt các tia BH,CK lần lượt tại D,E. Chứng minh tam giác DME là tam giác cân
Cho tam giác ABC, Â = 30*, hai đường cao BH, CK (H thuộc AC, K thuộc AB). Gọi E và F lần lượt là trung điểm của AB, AC. Chứng minh rằng:
a) Tam giác BEH và tam giác CKF là các tam giác đều.
b) EH ⊥ KF.
Cho tam giác ABC cân tại A, hai đường cao BH và CK ( ).
a) Chứng minh ∆ ABH=∆ACK
b) Chứng minh tam giác AKH là tam giác cân
c) Gọi I là giao của BH và CK; AI cắt BC tại M. Chứng minh rằng IM là phân giác của .
d) Chứng minh: .HK//BC
Cho tam giác ABC nhọn .AM là trung tuyến .Đường cao BH,CK cắt đường vuông góc tại M ở 2 điểm lần lượt là E và D.Chứng minh:Tam giác DME cân
Cho tam giác ABC ; đường cao AH , vẽ AD, CK lần lượt là các đường phân giác của tam giác ABH; ABC; AD cắt CK tại E . a) chứng minh rằng tam giác ACD