Đặt b+c-a=x
c+a-b=y (x,y,z>0)
a+b-c=z
rồi rút a,b,c theo x,y,z.
AD Svacso
Đặt: x = b + c - a
y = c + a - b
z = a + b - c
=> x + y + z = a + b + c = 2
=> \(a=\frac{y+z}{2}\); \(b=\frac{x+z}{2}\); \(c=\frac{x+y}{2}\)
=> \(S=\frac{1}{2}\left(\frac{y+z}{x}+\frac{4z+4x}{y}+\frac{9x+9y}{z}\right)\)
\(=\frac{1}{2}\left(\frac{2-x}{x}+\frac{8-4y}{y}+\frac{18-9z}{z}\right)\)
\(=\frac{1}{x}+\frac{4}{y}+\frac{9}{z}-7\ge\frac{\left(1+2+3\right)^2}{x+y+z}-7=11\)
Dấu "=" xảy ra <=> \(\frac{1}{x}=\frac{2}{y}=\frac{3}{z}=\frac{1+2+3}{x+y+z}=3\)
=> x = 1/3; y = 2/3; z = 1
=> a = 5/6; b = 2/3; c = 1/2
Vậy min S = 11 đạt tại a = 5/6; b = 2/3 ; c = 1/2
Cách em ko khác cô Chi. Nhưng đỡ phải đặt ạ
\(\frac{a}{b+c-a\:}+\frac{4b}{c+a-b}+\frac{9c}{a+b-c}+14\)
\(=\frac{B+C}{A}+\frac{4\left(C+A\right)}{B}+\frac{9\left(A+B\right)}{C}\)
\(\frac{2-A}{A}+\frac{8-4B}{B}+\frac{18-9C}{C}\)
\(=2\left(\frac{1}{A}+\frac{4}{B}+\frac{9}{C}\right)-14\)
\(\ge2.\frac{36}{A+B+C}-14=22̸\)
Em thấy mik nhqàm đâu đó ạ