Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
pham trung thanh

Cho tam giác ABC có chu vi bằng 2. Kí hiệu a;b;c là độ dài 3 cạnh tam giác.

Tính \(MinS=\frac{a}{b+c-a}+\frac{4b}{c+a-b}+\frac{9c}{a+b-c}\)

Vũ Phương Mai
3 tháng 11 2017 lúc 20:26

Đặt b+c-a=x

c+a-b=y                           (x,y,z>0)

a+b-c=z

rồi rút a,b,c theo x,y,z.

AD Svacso 

Nguyễn Linh Chi
18 tháng 5 2020 lúc 14:22

Đặt: x = b + c - a 

y = c + a - b 

z = a + b - c 

=> x + y + z = a + b + c = 2 

=> \(a=\frac{y+z}{2}\)\(b=\frac{x+z}{2}\)\(c=\frac{x+y}{2}\)

=> \(S=\frac{1}{2}\left(\frac{y+z}{x}+\frac{4z+4x}{y}+\frac{9x+9y}{z}\right)\)

\(=\frac{1}{2}\left(\frac{2-x}{x}+\frac{8-4y}{y}+\frac{18-9z}{z}\right)\)

\(=\frac{1}{x}+\frac{4}{y}+\frac{9}{z}-7\ge\frac{\left(1+2+3\right)^2}{x+y+z}-7=11\)

Dấu "=" xảy ra <=> \(\frac{1}{x}=\frac{2}{y}=\frac{3}{z}=\frac{1+2+3}{x+y+z}=3\)

=> x = 1/3; y = 2/3; z = 1 

=> a = 5/6; b = 2/3; c = 1/2

Vậy min S = 11 đạt tại  a = 5/6; b = 2/3 ; c = 1/2

Khách vãng lai đã xóa
zZz Cool Kid_new zZz
18 tháng 5 2020 lúc 19:09

Cách em ko khác cô Chi. Nhưng đỡ phải đặt ạ

\(\frac{a}{b+c-a\:}+\frac{4b}{c+a-b}+\frac{9c}{a+b-c}+14\)

\(=\frac{B+C}{A}+\frac{4\left(C+A\right)}{B}+\frac{9\left(A+B\right)}{C}\)

\(\frac{2-A}{A}+\frac{8-4B}{B}+\frac{18-9C}{C}\)

\(=2\left(\frac{1}{A}+\frac{4}{B}+\frac{9}{C}\right)-14\)

\(\ge2.\frac{36}{A+B+C}-14=22̸\)

Em thấy mik nhqàm đâu đó ạ

Khách vãng lai đã xóa

Các câu hỏi tương tự
Quyết Tâm Chiến Thắng
Xem chi tiết
Xem chi tiết
Lê Xuân Lâm
Xem chi tiết
nguyễn thị diệu linh
Xem chi tiết
Ngocmai
Xem chi tiết
Nguyễn Quỳnh Anh
Xem chi tiết
nguyễn văn tâm
Xem chi tiết
Nguyễn Thái Anh
Xem chi tiết
Phan Thị Hà Vy
Xem chi tiết