a: Xét ΔAMB và ΔAMN có
AB=AN
góc BAM=góc NAM
AM chung
Do đó: ΔAMB=ΔAMN
b: Xét ΔBME và ΔNMC có
góc MBE=góc MNC
MB=MN
góc BME=góc NMC
DO đo; ΔBME=ΔNMC
=>ME=MC
a: Xét ΔAMB và ΔAMN có
AB=AN
góc BAM=góc NAM
AM chung
Do đó: ΔAMB=ΔAMN
b: Xét ΔBME và ΔNMC có
góc MBE=góc MNC
MB=MN
góc BME=góc NMC
DO đo; ΔBME=ΔNMC
=>ME=MC
Cho tam giác ABC có cạnh AB < AC. Kẻ AM là p/g của góc A ( \(M\in BC\)). Trên cạnh AC lấy điểm N sao cho AN = AB.
a) Chứng minh : \(\Delta AMB=\Delta AMN\)
b) Gọi E là giao điểm của AB và NM. Chứng minh ME = MC
c) Kẻ NK // AM ( K thuộc BC) . Chứng tỏ góc BNK vuông
Cho tam giác ABC có cạnh AB < AC. Kẻ AM là p/g của góc A ( \(M\in BC\)). Trên cạnh AC lấy điểm N sao cho AN = AB.
a) Chứng minh : \(\Delta AMB=\Delta AMN\)
b) Gọi E là giao điểm của AB và NM. Chứng minh ME = MC
c) Kẻ NK // AM ( K thuộc BC) . Chứng tỏ góc BNK vuông
Cho Tam giác ABC có cạnh AB< AC. Kẻ AM là tia phân giác của góc A( M thuộc BC). Trên cạnh AC lấy điểm N sao cho AN= AB.
a/ CM: tam giác AMB= tam giác AMN.
b/Tính các góc của tam giác ABC nếu góc BAM= 35 độ, góc B= 80 độ
c/ Gọi E là giao điểm của AB và NM. CM: ME= MC
d/ Kẻ NK// AM (K thuộc BC). Chứng tỏ góc BNK vuông.
Cho tam giác ABC có AB = AC và AB > BC. Gọi M là trung điểm của cạnh BC.
a. Chứng minh rằng tam giác ABM = tam giác ACM và AM vuông góc với BC
b. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho AD = AE. CHỨNG minh tam giác AMD = tam giác AME
c. Gọi N là trung điểm của đoạn thẳng BD. Trên tia đối của tia NM lấy điểm K sao cho NK = NM. Chứng minh ba điểm D, E ,K thẳng hàng
Cho tam giác ABC có AB=AC, M là trung điểm của BC. Trên cạnh AB lấy điểm D, trên cạnh AC lấy E sao cho AD= AE
a. Chứng minh rằng tâm giác AMB = tam giác AMC
b. Chứng minh rằng AM là tia phân giác của góc A và AM vuông góc với BC
c. Gọi K là giao điểm của AM và DE. Chưng minh AK vuông góc với DE
d. trên tia đối của tia ED lấy đeiểm F sao cho FE= MC, gọi H là trung điểm của EC. Chứng minh 3 điểm M, H, F thẳng hàng
Cho ΔABC cân ở A. Trên cạnh BC lấy điểm M, N sao cho BM = CN < BC/2. Kẻ ME vuông góc với AB, NF vuông góc với AC (E ϵ AB, F ϵ AC), EM cắt FN tại H. Chứng minh:
a) ΔABM = ΔACN.
b) Gọi D là trung điểm của MN. Chứng minh AD là tia phân giác của góc BAC.
c) EF // BC.
d) Chứng mình: A, D, H thẳng hàng.
Cho tam giác ABC có AB=AC và AB>BC .M là trung điểm của cạnh BC
1/ Chứng minh tam giác ABM= tam giác ACM vá AM vuông góc với BC
2/ Trên cạnh AB lấy D, trên cạnh AC lấy E sao cho AD=AE. Chứng minh tam giác AMD = tam giác AME
3/ Gọi N là trung điểm của BD. Trên tia đối tia NM lấy điểm K sao cho NK=NM. Chứng minh 3 điểm D, E, K thẳng hàng
cho tam giác ABC vuông tại A (AB<AC). Trên cạnh BC lấy điểm M sao cho BA=BM.Kẻ BE vuông góc AM (E thuộc AM)
a) chứng minh BE là tia phân giác của góc ABM
b) kẻ đường cao AH của tam giác ABC. Gọi K là giao điểm của AH với BE. Chứng minh MK//CA
Vẽ cả hình
cho tam giác abc có AB=AC,gọi AM là tia phân giác của góc A(M thuộc BC)
a Chứng minh tam giác AMB = tam giác AMC
b Chứng minh M là trung điểm của cạnh BC và AM ⊥ BC
c Trên tia AM lấy điểm K sao cho MA = MK. Chứng minh AB = CK và AB // CK
: Cho tam giác ABC có AB = AC, gọi AM là tia phân giác của góc A(M thuộc BC). a) Chứng minh tam giác AMB = tam giác AMC
b) Chứng minh M là trung điểm của cạnh BC và AM ⊥ BC.
c) Trên tia AM lấy điểm K sao cho MA = MK. Chứng minh AB = CK và AB // CK