Có góc BAC bằng 60 độ => góc C'HB'=120 độ=>
góc BHC=120 độ(1)
Có góc BAC=60 độ=>góc BOC=120 độ (2)
Từ (1) và (2) => BHC=BOC=120 độ
mà chúng nhìn đoạn BC
=> BHOC nội tiếp
Có góc BAC bằng 60 độ => góc C'HB'=120 độ=>
góc BHC=120 độ(1)
Có góc BAC=60 độ=>góc BOC=120 độ (2)
Từ (1) và (2) => BHC=BOC=120 độ
mà chúng nhìn đoạn BC
=> BHOC nội tiếp
Cho tam giác ABC có 3 góc nhọn (AB < AC) nội tiếp đường tròn (O) có M là trung điểm của AB, N là trung điểm của BC. Đường cao hạ từ đỉnh A của tam giác ABC cắt đường tròn (O) tại H và cắt đường tròn (T) ngoại tiếp tam giác BNH tại K. Gọi D và E lần lượt là giao điểm của đường thẳng HN với đường thẳng AC và đường tròn (O) ; F là giao điểm của đường thẳng DK và đường tròn (T). Đường tròn ngoại tiếp tam giác DEF cắt đường tròn (T) tại P và cắt đường thẳng AC tại Q. Chứng minh rằng: ba điểm N, P, Q thẳng hàng.
Giúp mình với . ( giải chi tiết và cái hình luôn)
Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H là
giao điểm của BM và CN.
a) Tính số đo các góc BMC và BNC.
b) Chứng minh AH vuông góc BC.
c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH
Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho góc
MAB = 60độ . Kẻ dây MN vuông góc với AB tại H.
a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM).
b) Chứng minh MN2 = 4AH.HB .
c) Chứng minh tam giác BMN là tam giác đều và điểm O là trọng tâm của nó.
d) Tia MO cắt đường tròn (O) tại E, tia MB cắt (B) tại F. Chứng minh ba điểm N, E, F thẳng hàng.
Bài 3, Cho đường tròn (O; R) và điểm A cách O một khoảng bằng 2R, kẻ tiếp tuyến AB tới đường
tròn (B là tiếp điểm).
a) Tính số đo các góc của tam giác OAB
b) Gọi C là điểm đối xứng với B qua OA. Chứng minh điểm C nằm trên đường tròn O và AC
là tiếp tuyến của đường tròn (O).
c) AO cắt đường tròn (O) tại G. Chứng minh G là trọng tâm tam giác ABC.
Bài 4, Từ điểm A ở ngoài đường tròn (O; R) kẻ hai tiếp tuyến AB, AC (với B và C là hai tiếp điểm). Gọi H là giao điểm của OA và BC.
a) Chứng minh OA vuông góc BC và tính tích OH.OA theo R
b) Kẻ đường kính BD của đường tròn (O). Chứng minh CD // OA.
c) Gọi E là hình chiếu của C trên BD, K là giao điểm của AD và CE. Chứng minh K là trung điểm CE.
Cho tam giác ABC nội tiếp đường tròn tâm O. Gọi H là trực tâm, i là tâm đường tròn nội tiếp tam giác.
a) CM: AI là phân giác của góc OAH
b) cho góc ABC = 6o độ, CM: IO=IH
1. Cho đường tròn tâm O đường kính AB, vẽ đường tròn tâm M đường kính OA. bán kính OC của đường tròn O cắt M tại D, vẽ CD vuông góc với AB. Tứ giác ADCH là hình gì?
2.Cho (O;R) Vẽ 2 bán kính OA;OB. Trên OA và OB lấy các điểm M,N sao cho OM=ON. Vẽ dây BC đi qua MN (M nằm giữa C và N)
a. So sánh MC và ND
b.Biết AOB=90 độ và CM=MN=MD. Tính OM theo R
3.Cho tam giác ABC nhọn nội tiếp đường tròn tâm O và cá góc A=45 độ. 2 đường tròn BE và CF cắt nhau tại E. CMR: B,E,O,F,C cùng nằm trên 1 đường tròn.
Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 15cm, BC = 25cm, tính AH và số đo của góc C ( làm tròn dến độ )
a/ Chứng minh: C là trung điểm của AD.
b/ Chứng minh: Bốn điểm C, D, H, O cùng thuộc 1 dường tròn.
c/ CB cắt DO tại E. Chứng minh: BC là tiếp tuyến của (S).
cho đường tròn tâm o nội tiếp tam giác ABC cân tại A đường cao AH cắt đường tròn tâm o tại D chứng minh BC.BC=4AH.DH
tam giác ABC,góc A=90,AB<AC nội tiếp đường tròn tâm (O) đường kính BC dây AD vuống góc vs BC.DB giao CA tại E ,qua E kẻ đường thẳng CA tại E.qua E kẻ đường thẳng vuống góc vs DC cắt DC ở H cắt AB ở S
cmr:a;tam giác EBF cân
b;tam giác HAF cân
c,HA là tiếp tuyến đường tròn tâm (O)
Cho tam giác ABC, vẽ cung tròn tâm O đường kính BC, nó cắt 2 cạnh AB, AC theo thứ tự ở D,E
a) Chứng minh: CD vông góc AB Và BE vuông góc AC
b) Chứng minh: 4 điểm B, D, E, C cùng thuộc một đường tròn tâm I
c) Gọi K là giao điểm của BE và CD. Chứng minh AK vông góc BC
Tam giác ABC cân ở A. Vẽ đường tròn tâm D, đường kính BC cắt AC và AB ở E và F. GỌi H là giao điểm của BE và CF. C/m:
a. 4 điểm A, E, H, F cùng thuộc đường tròn tâm O.
b. DE là tiếp tuyến của (O)
cảm ơn mọi người trước nhé!!