cho tam giác ABc nhọn. Đường tròn bán kính BC cắt AB,AC lần lượt tại E và F ,BF cắt EC tại H . Tia AH cắt đường thẳng BC tại N cm tứ giác HFCN nội tiếp cm FB là phân giác góc EFN giả sử AH bằng BC tính góc BAC của tam giác ABC
Cho tam giác ABC nhọn (AB < AC) . Đường tròn (O;R) đường kính BC cắt AB, AC lần lượt tại E, F. Gọi H là giao điểm của BF và CE; AH cắt BC tại D. I a) Chứng minh: tứ giác AEHF nội tiếp và AD L BC. b) Chứng minh: tứ giác BEHD nội tiếp c) Chứng minh: tứ giác AEDC nội tiếp d) Chứng minh: DA là tia phân giác của góc EDF. f) Chứng minh: AE.AB=AH.AD=AF k) Chứng minh: DA.DH=DB.DC
CM CÂU C THÔI NHÁ
cho tam giác abc nhọn, đường tròn (O) đường kính bc cắt ab, ac lần lượt tại E và f. gọi h là giao điểm của bf và ce, ah cắt bc tại d.
a) chứng minh ah vuông góc với bc và tứ giác aehf nội tiếp, xác định tâm K của đường tròn này.
b) chứng minh ke là tiếp tuyến của đường tròn (O) và năm điểm o, d, e, k, f cùng thuộc một đường tròn
c) qua h vẽ đường thẳng vuông góc ho cắt ab, ac lần lượt tại m và n. chứng minh hm=hn
Cho tam giác ABC nhọn (AB < AC) .Vẽ đường tròn (O; R) đường kính BC cắt hai cạnh AB, AC lần lượt tại E và D.Gọi H là giao điểm của BD và CE. a) Chứng minh: góc BEC = 90° và tứ giác AEHD nội tiếp b) Tia DE cắt đường thẳng BC tại S. Chứng minh: AH vuông góc BC và SE .SD=SB.SC c)Tia AH cắt BC tại F. Chứng minh: FEC =FAC và tứ giác OFED nội tiếp và OF.OS = R²
Cho tam giác ABC có ba góc nhọn. Đường tròn (O; R) có đường kính BC cắt AB, AC lần lượt tại F và E; BE cắt CF tại H
a, Chứng minh tứ giác AFHE nội tiếp. Từ đó, xác định tâm I của đường tròn ngoại tiếp tứ giác này
b, Tia AH cắt BC tại D. Chứng minh HE.HB = 2HD.HI
c, Chứng minh bốn điểm D, E, I, F cùng nằm trên một đường tròn
B1: Cho tam giác ABC vuông tại A, biết AB = 6cm, AC = 8cm. Vẽ đường cao AH, đường tròn tâm O đường kính AH cắt AB tại E và cắt AC tại điểm F.
a) Chứng minh tứ giác AEHF là hình chữ nhật
b) Chứng minh tứ giác BEFC nội tiếp
c) Gọi I là trung điểm của B
C.Chứng minh AI vuông góc với EF
d) Gọi K là tâm của đường tròn ngoại tiếp tứ giác BEF
C.Tính diện tích hình tròn tâm K.
B2: Cho ABC nhọn, đường tròn (O) đường kính BC cắt AB, AC lần lượt tại E và D, CE cắt BD tại H
a) Chứng minh tứ giác ADHE nội tiếp
b) AH cắt BC tại F. chứng minh FA là tia phân giác của góc DFE
c) EF cắt đường tròn tại K ( K khác E). chứng minh DK// AF
d) Cho biết góc BCD = 450 , BC = 4 cm. Tính diện tích tam giác ABC
B 3: cho đường tròn ( O) và điểm A ở ngoài (O)sao cho OA = 3R. vẽ các tiếp tuyến AB, AC với đường tròn (O) ( B và C là hai tiếp tuyến )
a) Chứng minh tứ giác OBAC nội tiếp
b) Qua B kẻ đường thẳng song song với AC cắt ( O) tại D ( khác B). đường thẳng AD cắt ( O) tại E. chứng minh AB2= AE. AD
c) Chứng minh tia đối của tia EC là tia phân giác của góc BEA
d) Tính diện tích tam giác BDC theo R
B4: Cho tam giác ABC nhọn, AB >AC, nội tiếp (O,R), hai đường cao AH, CF cắt nhau tại H
a) Chứng minh tứ giác BDHF nội tiếp? Xác định tâm của đường tròn ngoại tiếp tứ giác đó
b) Tia BH cắt AC tại E. chứng minh HE.HB= HF.HC
c) Vẽ đường kính AK của (O). chứng minh AK vuông góc với EF
d) Trường hợp góc KBC= 450, BC = R. tính diện tích tam giác AHK theo R
B5: Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O. Ba đương cao AE, BF, CK cắt nhau tại H. Tia AE, BF cắt đường tròn tâm O lần lượt tại I và J.
a) Chứng minh tứ giác AKHF nội tiếp đường tròn.
b) Chứng minh hai cung CI và CJ bằng nhau.
c) Chứng minh hai tam giác AFK và ABC đồng dạng với nhau
B6: Cho tam giác ABC nhọn nội tiếp đường tròn ( O; R ),các đường cao BE, CF .
a)Chứng minh tứ giác BFEC nội tiếp.
b)Chứng minh OA vuông góc với EF.
Cho tam giác ABC có ba góc nhọn (AB < AC). Đường tròn tâm O đường kính BC cắt cạnh AC cad AB lần lượt tại E và F. Gọi H là giao điểm của BE cà CF. AH cắt cạnh BC tại D.
a) Chứng minh các tứ giác BFEC, BFHD, CEHD nội tiếp đường tròn.
b) Qua O kẻ đường thẳng vuông góc với BC cắt DE và DF lần lượt tại G và I. Chứng minh BGCI là hình thoi
Cho tam giác nhọn ABC (AB < AC), đường tròn tâm (O), đường kính BC cắt cạnh AB, AC lần lượt tại F và E, BE và CF cắt nhau tại H.
a) Chứng minh: AH vuông góc BC tại D và tứ giác CDHE nội tiếp.
b) Qua D vẽ đường thẳng song song CF cắt tia EF tại M. Chứng minh: tứ giác BMED nội tiếp và \(\widehat{EMB}=\widehat{EDC}\)
c) Chứng minh OF // BM.
Cho tam giác ABC nhọn, Vẽ đường tròn (O) đường kính BC cắt AB, AC lần lượt tại F và E, CF cắt BE tại H.
a) Chứng minh tứ giác AEHF nội tiếp đường tròn.
b) Gọi I là tâm đường tròn ngoại tiếp tứ giác AEHF. Tính số đo cung EHF, diện tích hình quạt IEHF của đường tròn (I) nếu góc BAC = 600, AH = 4cm.
c) Gọi AH cắt BC tại D. Chứng minh FH là tia phân giác của góc DFE
d) Chứng minh rằng hai tiếp tuyến của (O) tại E, F và AH đồng quy tại một điểm.