a: Xét tứ giác AEHF có \(\widehat{AEH}+\widehat{AFH}=180^0\)
nên AEHF là tứ giác nội tiếp
b: Xét ΔABE vuông tại E và ΔHCE vuông tại E có
\(\widehat{ABE}=\widehat{HCE}\)
Do đó: ΔABE\(\sim\)ΔHCE
Suy ra: AB/HC=BE/CE
hay \(AB\cdot CE=BE\cdot HC\)
a: Xét tứ giác AEHF có \(\widehat{AEH}+\widehat{AFH}=180^0\)
nên AEHF là tứ giác nội tiếp
b: Xét ΔABE vuông tại E và ΔHCE vuông tại E có
\(\widehat{ABE}=\widehat{HCE}\)
Do đó: ΔABE\(\sim\)ΔHCE
Suy ra: AB/HC=BE/CE
hay \(AB\cdot CE=BE\cdot HC\)
Cho tam giác ABC có ba góc nhọn (AB<AC) nội tiếp đường tròn (O). Vẽ ba đường cao AD;BE và CF cắt nhau tại H.
a) Chứng minh tứ giác AFHE và tứ giác BFEC là các tứ giác nội tiếp đường tròn
b) Đường thẳng EF cắt BC tại I. Chứng minh IE.IF=IB.IC
c) AI cắt đường tròn (O) tại K. Gọi M là trung điểm BC. Chứng minh ba điểm K,H,M thẳng hàng
Cho ∆ABC nhọn (AB<AC) nội tiếp đường tròn (O), các đường cao AD, BE và CF cắt nhau tại H.
a) Chứng minh tứ giác AEHF và BCEF nội tiếp
b) Hai đường thẳng EF và BC cắt nhau tại M. Chứng minh MB.MC=ME.MF
c) AM cắt đường tròn (O) tại N. Đường thẳng qua B và song song với AC cắt AM tại I và cắt AH tại K. Chứng minh AN ⊥ HN và HI=HK.
Cho tam giác ABC nhọn (AB<AC) nội tiếp đường tròn (O), các đường cao BE, CF cắt nhau tại H
a) chứng minh tứ giác AEHF, BCEF nội tiếp
b) Đường thẳng EF và BC cắt nhau tại I, vẽ tiếp tuyến ID của đường tròn O. Chứng minh ID^2=IB*IC
c) DE, DF cắt đường tròn O tại M, N. Chứng minh MN//EF
Cho LABC nhọn, B = 60 ^ 3 nội tiếp đường tròn (O; 3cm). Vẽ 2 đường cao BE và CF cắt nhau tại H
a) Chứng minh tứ giác AEHF nội tiếp
b) Chứng minh tử giác BFEC nội tiếp
c) Tính độ dài cung nhỏ AC
đ). Chứng minh đường thẳng OA vuông góc với EF.
B1: Cho tam giác ABC vuông tại A, biết AB = 6cm, AC = 8cm. Vẽ đường cao AH, đường tròn tâm O đường kính AH cắt AB tại E và cắt AC tại điểm F.
a) Chứng minh tứ giác AEHF là hình chữ nhật
b) Chứng minh tứ giác BEFC nội tiếp
c) Gọi I là trung điểm của B
C.Chứng minh AI vuông góc với EF
d) Gọi K là tâm của đường tròn ngoại tiếp tứ giác BEF
C.Tính diện tích hình tròn tâm K.
B2: Cho ABC nhọn, đường tròn (O) đường kính BC cắt AB, AC lần lượt tại E và D, CE cắt BD tại H
a) Chứng minh tứ giác ADHE nội tiếp
b) AH cắt BC tại F. chứng minh FA là tia phân giác của góc DFE
c) EF cắt đường tròn tại K ( K khác E). chứng minh DK// AF
d) Cho biết góc BCD = 450 , BC = 4 cm. Tính diện tích tam giác ABC
B 3: cho đường tròn ( O) và điểm A ở ngoài (O)sao cho OA = 3R. vẽ các tiếp tuyến AB, AC với đường tròn (O) ( B và C là hai tiếp tuyến )
a) Chứng minh tứ giác OBAC nội tiếp
b) Qua B kẻ đường thẳng song song với AC cắt ( O) tại D ( khác B). đường thẳng AD cắt ( O) tại E. chứng minh AB2= AE. AD
c) Chứng minh tia đối của tia EC là tia phân giác của góc BEA
d) Tính diện tích tam giác BDC theo R
B4: Cho tam giác ABC nhọn, AB >AC, nội tiếp (O,R), hai đường cao AH, CF cắt nhau tại H
a) Chứng minh tứ giác BDHF nội tiếp? Xác định tâm của đường tròn ngoại tiếp tứ giác đó
b) Tia BH cắt AC tại E. chứng minh HE.HB= HF.HC
c) Vẽ đường kính AK của (O). chứng minh AK vuông góc với EF
d) Trường hợp góc KBC= 450, BC = R. tính diện tích tam giác AHK theo R
B5: Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O. Ba đương cao AE, BF, CK cắt nhau tại H. Tia AE, BF cắt đường tròn tâm O lần lượt tại I và J.
a) Chứng minh tứ giác AKHF nội tiếp đường tròn.
b) Chứng minh hai cung CI và CJ bằng nhau.
c) Chứng minh hai tam giác AFK và ABC đồng dạng với nhau
B6: Cho tam giác ABC nhọn nội tiếp đường tròn ( O; R ),các đường cao BE, CF .
a)Chứng minh tứ giác BFEC nội tiếp.
b)Chứng minh OA vuông góc với EF.
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn ( O ). Ba đường cao AD,BE,CF cắt nhau tại H. a) Chứng minh tứ giác AFHE là tứ giác nội tiếp. b) Vẽ đường kính AK của ( O ). Chứng minh : AB×AC = AD×AK
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O). Các đường cao AD, BE, CF cắt nhau tại H
A. tứ giác AEHF nội tiếp
b. tức giác BFEC nội tiếp
c. chúng minh OA vuông góc EF
cho tam giác ABC nhọn(AB<AC) nội tiếp đường tròn tâm O. 2 đường cao BE , CF cắt nhau tại H
a) chứng minh tứ giác AEHF và tứ giác BCEF là các tứ giác nội tiếp được
b)đường thẳng EF cắt đường thẳng BC tại M. Chứng minh tam giác MFC đòng dạng tam giác MBE
c) vẽ đường kính AK của dường tròn (O). chứng minhAK vuong góc EF
d) đường thẳng HK cắt đường trò (O) tại I(I khác K). chứng minh 3 điểm: A,I,M thẳng hàng
Cho tam giác ABC nhọn (AB<AC) nội tiếp đường tròn (O), các đường cao BE, CF cắt nhau tại H
a) chứng minh tứ giác AEHF, BCEF nội tiếp
b) đường thẳng EF và BC cắt nhau tại I, vẽ tiếp tuyến ID với đường tròn ( D là tiếp điểm, D thuộc cung BC nhỏ). Chứng minh: ID^2=IB*IC
c) DE, DF cắt đường tròn (O) tại M,N. Chứng minh MN//EF