b) Điểm \(M\) thuộc trục tung nên tọa độ điểm \(M\) có dạng \(M\left(0;m\right)\).
\(N\) là trung điểm của \(AB\) suy ra \(N\left(1;4\right)\).
\(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|=\left|2\overrightarrow{MN}\right|=2\sqrt{1^2+\left(m-4\right)^2}\ge2\sqrt{1}=2\)
Dấu \(=\) xảy ra khi \(m-4=0\Leftrightarrow m=4\).
Vậy \(M\left(0;4\right)\).
a) Trọng tâm \(G\) của tam giác \(ABC\):
\(x_G=\dfrac{x_A+x_B+x_C}{3}=\dfrac{4+2-2}{3}=\dfrac{4}{3},y_G=\dfrac{y_A+y_B+y_C}{3}=\dfrac{3-1+5}{3}=\dfrac{7}{3}\).
Vậy \(G\left(\dfrac{4}{3};\dfrac{7}{3}\right)\) là trọng tâm tam giác \(ABC\).