a, Xét △ABH và △AHD có:
∠AHB=∠ADH (=90o) , ∠BAH chung
⇒ △ABH ∼ △AHD (g.g)
b, Xét △AHE và △HCE có:
∠AHE=∠ACH (cùng phụ ∠AHC), ∠AEH=∠CEH (=90o)
⇒ △AHE ∼ △HCE (g.g)
⇒ HEEC=AEHEHEEC=AEHE ⇒ HE2=AE.EC
a, Xét △ABH và △AHD có:
∠AHB=∠ADH (=90o) , ∠BAH chung
⇒ △ABH ∼ △AHD (g.g)
b, Xét △AHE và △HCE có:
∠AHE=∠ACH (cùng phụ ∠AHC), ∠AEH=∠CEH (=90o)
⇒ △AHE ∼ △HCE (g.g)
⇒ HEEC=AEHEHEEC=AEHE ⇒ HE2=AE.EC
cho tam giác ABC có AH là đường cao(HϵBC).Gọi D và E lần lượt hình chiếu của H trên AB và AC.Chứng minh rằng:
A)△ABH đồng dạng với △AHD
B)HE2=AE.EC
Giups mình với
Cho tam giác ABC có đường cao AH (H ∈ BC).Gọi D và E lần lượt là hình của H trên AB và AC.Chứng minh rằng:
a) △ABH ∞ △AHD
b) HE2 = AE.EC
c) Gọi M là giao điểm của BE và CD.Chứng minh △DBM ∞ △ECM
Cho tam giác ABC có AH là đường cao(H thuộc BC). Gọi D và E lần lượt là hình chiếu của H trên AB và AC. Chứng minh rằng:
a, tam giác ABH đồng dạng với tam giác AHD
b,HE\(^2\)=AE.EC
c,Gọi M là giao điểm của BE và CD. Chứng minh rằng tam giác DBM đồng dạng với tam giác ECM
cho tam giác abc vuông tại a có ah là đường cao (h thuộc bc) .gọi d và e lần lượt là hình chiếu của h trên ab và ac . cm rằng
a, aehd là hình chữ nhật
b, tam giác abh đồng dạng tam giác ahd
c, he^2=ae.ec
d, gọi m là giao điểm của be và cd. cm rằng tam giác dbm đồng dạng tam giác ecm
cho tam giác abc vuông tại a có ah là đường cao (h thuộc bc) .gọi d và e lần lượt là hình chiếu của h trên ab và ac . cm rằng a, aehd là hình chữ nhật b, tam giác abh đồng dạng tam giác ahd c, he^2=ae.ec d, gọi m là giao điểm của be và cd. cm rằng tam giác dbm đồng dạng tam giác ecm
Cho tam giác ABC vuông tại A có AH là đường cao (H thuộc BC). Gọi D và E lần lượt là hình chiếu của H trên AB và AC. Chứng minh rằng:
a) AEHD là hình chữ nhật
b) △ABH ~ △AHD
c) HE2 = AE.EC
d) Gọi M là giao điểm của BE và CD. Chứng minh rằng △DBM ~ △ECM
Cho tam giác ABC có AH là đường cao (H thuộc BC). Gọi D và E lần lượt là hình chiếu của H trên AB và AC. Chứng minh rằng:
a, Tam giác ABH đồng dạng tam giác AHD
b, \(HE^2=AE.EC\)
c, Gọi M là giao điểm của BE và CD. CMR: tam giác DBM đồng dạng tam giác ECM.
Cho tam giác ABC nhọn có đường cao AH,gọi I và K lần lượt là hình chiếu vuông góc của H trên AB và AC
a, Chứng minh tam giác AHI đồng dạng với tam giác ABH
b, Chứng minh AI.AB=AK.AC
C, gọi M là trung điểm của AB, E là điểm giao nhau giữa MD và AH, Chứng Minh ADsong song với CE
Cho tam giác ABC vuông tại A, đường cao AH. Gọi D và E theo thứ tự là hình chiếu vuông góc của H trên cạnh AB và AC
a) Tứ giác ADHE là hình gì? Vì sao?
b) Chứng minh tam giác AHD đồng dạng với tam giác ABH; tam giác ADE và tam giác ABC đồng dạng
c) Chứng minh diện tích tam giác ABC >= 4.diện tích tam giác ADE.