Cho tam giác ABC vuông tại A có AH là đường cao (H thuộc BC). Gọi D và E lần lượt là hình chiếu của H trên AB và AC. Chứng minh rằng:
a) AEHD là hình chữ nhật
b) △ABH ~ △AHD
c) HE2 = AE.EC
d) Gọi M là giao điểm của BE và CD. Chứng minh rằng △DBM ~ △ECM
cho tam giác abc vuông tại a có ah là đường cao (h thuộc bc) .gọi d và e lần lượt là hình chiếu của h trên ab và ac . cm rằng a, aehd là hình chữ nhật b, tam giác abh đồng dạng tam giác ahd c, he^2=ae.ec d, gọi m là giao điểm của be và cd. cm rằng tam giác dbm đồng dạng tam giác ecm
Cho tam giác ABC có AH là đường cao (H thuộc BC). Gọi D và E lần lượt là hình chiếu của H trên AB và AC. Chứng minh rằng:
a, Tam giác ABH đồng dạng tam giác AHD
b, \(HE^2=AE.EC\)
c, Gọi M là giao điểm của BE và CD. CMR: tam giác DBM đồng dạng tam giác ECM.
Cho tam giác ABC có AH là đường cao(H thuộc BC). Gọi D và E lần lượt là hình chiếu của H trên AB và AC. Chứng minh rằng:
a, tam giác ABH đồng dạng với tam giác AHD
b,HE\(^2\)=AE.EC
c,Gọi M là giao điểm của BE và CD. Chứng minh rằng tam giác DBM đồng dạng với tam giác ECM
cho Tam giac abc có AH la đường cao (H thuộc BC). Gọi D và E lần lượt là hình chiếu của H trên AB và AC. Gọi M là giao điểm của BE và CD. CMR: tam giác DBM đồng dạng với tam giác ECM
Cho tam giác ABC có AH là đường cao( H thuộc BC0.Gọi D và E lần lượt là hình chiếu của H trên AB và AC.CMR:
a,TG ABH đồng dạng TG AHD
b, HE22 = AE.EC
c, Gọi M là giao điểm của BE và CD.CMR Tg DBM đồng dạng Tg ECM
Bài 1: Cho tam giác ABC vuông tại B , đường phân giác AD ( D thuộc BC ) . Kẻ CK vuông góc với đường thẳng AD tại K
a) Chứng minh : Tam giác BDA ~ Tam giác KDC
b) Chúng minh : Tam giác DBK ~ Tam giác DAC
c) Gọi I là giao điểm AB và CK . Chứng minh : AB . AI + DC . BC = AC2
Bài 2: Cho tam giác ABC có AH là đường cao ( H thuộc BC ) . Gọi D và E lần lượt là hình chiếu của H trên AB và AC . Chứng minh :
a) Tam giác ABH ~ Tam giác ADH
b) HE2 = AE . EC
c) Gọi M là giao điểm của BE và CD . Chứng minh tam giác DBM ~ Tam giác ECM
Bài 3: Cho tam giác ABC vuông tại A . Đường cao AH
a) Chứng minh : Tam giác ABC ~ Tam giác HBA
b) Tính độ dài BC và AH ,biết AB = 6 cm , AC = 8 cm
c) Phân giác góc ACB cắt AH tại E , cắt AB tại D . Tính tỉ số diện tích của hai tam giác ACD và HCE
Cho tam giác ABC vuông tại A (AB < AC ) có AH là đường cao ( H thuộc BC ) Gọi D và E lần lượt là hình chiếu của H trên AB và AC a) CMR : Tứ giác AEHD là hình chữ nhật b) CMR : ABH đông dạn AHD C) cho AB=9 cm và Ac = 12 cm. Tinh BC và diện tích ADHC d) Gọi M là giao điểm BE và CD . CMR BD . CM = EC. BM
Cho tam giác ABC vuông tại A, đường cao AH. Gọi D và E lần lượt là hình chiếu của H trên các cạnh AB,AC.
a)CM tam giác AHD đồng dạng với tam giác ABH và AH^2=AD.AB.
b)CM tam giác AED đồng dạng với tam giác ABC.
c) Gọi O là trung điểm của BC. CM AO vuông góc với DE.
d) Giả sử BC=2a không đổi. Tam giác ABC cần thêm điều kiện gì để diện tích của ADOE đạt giá trị lớn nhất? TÌm giá trị lớn nhất đó theo a.