Sửa đề: Các đường phân giác BD và CE cắt nhau ở I
a.Áp dụng t/c đường phân giác góc B, ta có:
\(\dfrac{AB}{BC}=\dfrac{AD}{CD}\)
\(\Leftrightarrow\dfrac{4}{6}=\dfrac{AD}{CD}\) \(\Leftrightarrow\dfrac{2}{3}=\dfrac{AD}{CD}\) \(\Leftrightarrow\dfrac{CD}{3}=\dfrac{AD}{2}\)
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\dfrac{CD}{3}=\dfrac{AD}{2}=\dfrac{CD+AD}{3+2}=\dfrac{AC}{5}=\dfrac{5}{5}=1\)
\(\Rightarrow CD=1.3=3cm\)
\(\Rightarrow AD=1.2=2cm\)
b.Áp dụng t/c đường phân giác góc C, ta có:
\(\dfrac{CA}{CB}=\dfrac{AE}{BE}\)
\(\Leftrightarrow\dfrac{5}{6}=\dfrac{AE}{BE}\)\(\Leftrightarrow\dfrac{BE}{6}=\dfrac{AE}{5}\)
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\dfrac{BE}{6}=\dfrac{AE}{5}=\dfrac{BE+AE}{6+5}=\dfrac{AB}{11}=\dfrac{4}{11}\)
\(\Rightarrow BE=\dfrac{4}{11}.6=\dfrac{24}{11}cm\)
\(\Rightarrow AE=\dfrac{4}{11}.5=\dfrac{20}{11}cm\)