Cho tam giác ABC có AB = 5, BC = 6 và AC = 9. Gọi M là trung điểm của BC, N là điểm thuộc cạnh AC sao cho AC = 3NC. Tính tích vô hướng \(\overrightarrow{AM}.\overrightarrow{BN}\).
Cho tam giác ABC; biết AB = 6a,AC = 8a, BC \(4\sqrt{5}a\) . Tính \(\overrightarrow{AB}.\overrightarrow{AC}\) . theo a
Cho tam giác ABC với A(-5,3), B(-2,6), C(2,2)
a)CMR tam giác ABC vuông
b)Tính (2\(\overrightarrow{AB}\)-\(\overrightarrow{AC}\))\(\overrightarrow{BC}\)
Cho tam giác \(ABC\) vuông tại \(A\) có \(AB=3a,AC=4a\). Gọi \(\overrightarrow{u},\overrightarrow{v},\overrightarrow{s}\) lần lượt là các véc-tơ có giá vuông góc với các đường thẳng \(AB,AC,BC\). Cho \(\left|\overrightarrow{u}\right|=AB,\left|\overrightarrow{v}\right|=AC,\left|\overrightarrow{s}\right|=BC\). Tính theo \(a\) độ dài của véc-tơ \(\overrightarrow{x}=\overrightarrow{u}+\overrightarrow{v}-\overrightarrow{s}\).
cho tam giác ABC vuông tại A có AB=1, AC=2. Dựng M sao cho AM=3 và AM vuông góc với BC. Đặt \(\overrightarrow{AM}=x\overrightarrow{AB}+y\overrightarrow{AC}\). Tìm x,y
Cho tam giác ABC có AB= 5; AC=8, số đo góc A bằng 60o. M,N là 2 điểm xác định bởi 5\(\overrightarrow{AM}\)=\(\overrightarrow{AB}\);4\(\overrightarrow{AN}\)=\(\overrightarrow{AC}\). Chứng minh CM vuông góc BN.
Cho tam giác ABC có G là trọng tâm.Và B' là điểm điểm đối xứng của B qua G.M là trung điểm của BC.Chứng mình rằng
a) \(\overrightarrow{AB'}=\frac{2}{3}\overrightarrow{AC}-\frac{1}{3}\overrightarrow{AB}\)
b)\(\overrightarrow{CB'}=\frac{-1}{3}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\)
c)\(\overrightarrow{MB}=\frac{1}{6}\overrightarrow{AC}-\frac{5}{6}\overrightarrow{AB}\)
Cho tam giác ABC có các cạnh AB = c, AC = b, BC = a. Tìm điểm M sao
cho vecto a\(\overrightarrow{MA}\) + b\(\overrightarrow{MB}\) + c\(\overrightarrow{MC}\) có độ dài nhỏ nhất?
Cho tam giác ABC có cạnh BC = a, AC = b, AB = c. Tìm vị trí điểm M để:
\(\overrightarrow{MA}.\overrightarrow{MB}+\overrightarrow{MB}.\overrightarrow{MC}+\overrightarrow{MC}.\overrightarrow{MA}\) đạt giá trị nhỏ nhất.